Using Relational Schemata
in a Computer Immune System
to Detect Multiple-Packet
Network Intrusions

THESIS

John L. Bebo, First Lieutenant, USAF
AFIT/GCS/ENG/02M-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCFE INSTITUTFE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

AFIT/GCS/ENG /02M-02

Using Relational Schemata
in a Computer Immune System
to Detect Multiple-Packet

Network Intrusions

THESIS

Presented to the Faculty
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science

John L. Bebo, B.G.S.

First Lieutenant, USAF

March, 2002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCS/ENG/02M-02

Using Relational Schemata
in a Computer Immune System
to Detect Multiple-Packet

Network Intrusions

John L. Bebo, B.G.S.

First Lieutenant, USAF

Approved:

Doct;m Gunsch / Date
Committge Chair P
B V/ /, .
A%ﬁa/ ﬁ(/ W22 V. 2 S apar ‘vz

Docﬁor (l}ar ~{amont™" / Date

Committee¢/ Member

/ 7 Sy s
A /J L [oo e J oAl H 2ee2
Doctor Heni{y B. Potoczny v Date

Committee Member

Acknowledgements

There are so many people who have helped me during these past eighteen months of study
that naming them all would be impossible. Still, I'd like to mention a few individuals, to

whom I'm particularly grateful.

First, I'd like to thank God, without whom, nothing is possible. I'd also like to
thank the Air Force for believing in me enough to send me to such a prestigious academic
institution. Until T got to AFIT, T thought I could hold my own with intellectuals. It

wasn’t until coming here that I saw how truly brilliant some people are.

Next, I'd like to thank my incredibly insightful and knowledgeable thesis advisor, Dr.
Gunsch, who always gave me just enough rope to hang myself, but kept watch over me to
ensure I didn’t tie the knot too tight. More often than once, just when I thought I was
plunging through the trap doors of the gallows, he would throw me a lifeline crafted from

his pure genius. Without his guidance I would have surely failed in my research effort.

I’d also like to thank my sponsor, the Air Force Research Laboratory, as well as my
AFIT colleagues, particularly Captains Paul Williams and Kevin Anchor, who patiently

put up with my incessant questions, and propelled me along this research path.

Finally, and most importantly, I’d like to thank my sweetheart, confidant, counselor,
companion, best friend, and the most beautiful (inside and out) personal trainer in Ohio.
She meticulously proofread hundreds of pages of technically tedious material, patiently
listened to hours of whining and complaining, happily pulled me away from the computers
and books when I needed a break, and never failed with her belief in me. You helped me

through much, much more than just school, honey, and I shall be eternally grateful.

John L. Bebo

iii

Table of Contents

Page

Acknowledgements iii
List of Figures ix
List of Tables e xi
List of Abbreviations xii
Abstract Xiv
L. Introduction Lo 1-1
1.1 Motivation 1-1

1.2 Background 1-2

1.3 Research Problem 1-6

1.4 Multiple-Packet Detection 1-6

1.5 Computer Immune System 1-9

1.6 Approach 1-9

1.6.1 Develop Relational Genes 1-10

1.6.2 Develop Relational Chromosomes 1-10

1.6.3 Generate Antibodies L. 1-10

1.6.4 Construct Training Sets 1-11

1.6.5 Construct Testing Sets 1-11

1.6.6 Detection Tests 1-11

1.7 Scope and Limitations 1-11

1.8 Roadmap 1-13

iv

II. Literature Review

2.1 Intrusion Detection

2.2 Intrusion Detection Systems
2.3 Methodologies in Anomaly Detection
2.3.1 Neural Networks
2.3.2 DataMining 0oL
2.3.3 Genetic Algorithms
2.4 Artificial Immune Systems
2.4.1 Pathogen
242 Immunity 00
243 Gene.
2.4.4 Chromosome,
245 Antibody L
2.4.6 Negative Selection
2.4.7 Affinity Maturation
2.4.8 Costimulation. 0L

2.5 Intrusion Detection Via a Computer Immune Systems

2.6 Multiple-Packet Intrusion Detection
2.7 Relational Schemata
II1. High Level Design and Methodology
3.1 Goals

3.2.1
3.2.2
3.2.3
3.24

3.2.5

2-1
2-3
2-3
2-4

2-4

2-7
2-7
2-8

2-8

3-3
3-4
3-5

3-5

Iv.

3.3 Crosschecking Genes L. 3-6
34 Packet Values. 3-7
3.5 Relational Space L. 3-7
3.6 Self/Non-Self Domains 3-10
3.7 CISUsage i 3-12
3.8 Attack Visualization 3-13
Low Level Design and Implementation 4-1
4.1 Version 0.0, Equal/Not-Equal Gene 4-2
4.2 Version 1.0, Less-Than, Greater-Than, Equal Gene 4-5
4.3 Version 2.0, Multiple Protocols, Additional Fields 4-6
4.4 Version 3.0, Three-Dimensional Chromosome Structure . . . 4-8
4.5 Version 4.0, Four-Dimensional Chromosome Structure 4-10
4.6 Version 2.44, Beta Crosschecking Gene 4-10
4.7 Version 2.116, Full Crosschecking Gene 4-12
4.8 GOPHER e 4-13
Experimentation and Analysis 5-1
5.1 Testing Methodology 5-1
5.2 Version 0.0 Testing 5-4
5.3 Version 1.0 Testing, 5-5
5.4 Version 2.44 Testing 5-6
5.5 Version 2.116 Testing 5-10
5.6 Versions 2.0, 3.0, and 4.0 Testing 5-11
5.6.1 Speed Testing 5-12

5.6.2 Effectiveness Testing 5-14

57 Analysisof Results 5-19
5.7.1 Low Hanging Fruit 5-19

vi

5.7.2
5.7.3
5.7.4
5.7.5
5.7.6

Higher Hanging Fruit
Unreachable Fruit
Fruit With Worms
Comparison To Snort

Discussion of Attacks

5.8 GOPHER Use

VI. Findings and Conclusions

6.1 Benefits
6.1.1
6.1.2
6.1.3
6.1.4

6.1.5

Relational Schemata
More Difficult Detection Avoidance
CIS Framework
Low and Slow Attacks

GOPHER

6.2 Limitations e

6.2.1

6.2.2

Packet Payload 0.

Alert Confirmation

6.3 Future Research Opportunities

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7

Expansion of the CIS Model
Statistical ID
Developing Relational Signatures
Relational Host-Based ID
Relational Schemata Changes
Statistical Lack of Relationships as an Indicator

Stochastic Packet or Field Selection

6.4 Concluding Remarks

Appendix A. Matrix of Code Version 1.0

vii

6-1
6-1
6-1
6-1
6-2
6-2

6-2

6-3
6-3

6-4

Appendix B. Matrix of Code Version 2.0 B-1
Appendix C. Matrix of Code Version 2.44 C-1
Appendix D. Matrix of Code Version 2.116 D-1
Appendix E. Matrix of Code Version 1.0 Plus MAC Address E-1
Appendix F. Run Time Data F-1
Appendix G. Lincoln Lab Attack Descriptions G-1
Appendix H. Screen Shots of Attacks Analyzed with GOPHER H-1
Appendix L. Source Code Availability I-1
Bibliography e BIB-1
Vita . . . e e e VITA-1

viii

Figure

1.1.

1.2.

2.1.
2.2.
2.3.

2.4.

3.1.

4.1.
4.2.
4.3.
4.4.
4.5.

4.6.

5.1
5.2.
5.3.
0.4.
9.5.

A.l.

B.1.

C.1.

List of Figures

Page
Man in the Middle Attack Scenario 1-5
Man in the Middle Attack Expanded 1-8
Example Intrusion Detection Signature 2-2
Multilayered Immune System [Hofm99] 2-8
Costimulation Process L. 2-10
CIS Antibody Lifecycle 2-11
Typical Packet Textual Display 3-2
Man in the Middle Attack 4-3
Man in the Middle Attack Equal/Not-Equal Relational Matrix . . . 4-4
Partial Less Than, Greater-Than, and Equal Relational Matrix . . 4-6
GOPHER Main Screen 4-15
GOPHER Field Breakouts 4-16
GOPHER Drill Down Screen 4-17
ARP Spoof Attack 5-8
DSniff Attack Data Files 5-9
Run Time Comparisons v 5-13
SYN Flood Depicted by GOPHER 5-28
Attack 51.180445 Visualized With GOPHER 5-29
Less-than, Greater-than, and Equal Relational Matrix and the Joncheray
MitM Attack A-1
Example 2-D Matrix o B-1
Example Beta Crosschecking Matrix C-1

ix

Figure

D.1.

E.1.

F.1.

F.2.

G.1.

H.1.
H.2.
H.3.
H.4.
H.5.
H.6.
H.7.
H.8.

Page

Example Full Crosschecking Matrix D-1

Less-than, Greater-than, Equal Matrix With MAC Addresses Added E-1

Run Times of Code Versions F-1
Standard Deviation oo F-1
Attack Descriptions (adapted from Lincoln Lab Database [LLab99]) G-1
Attack 45.192523 TP Sweep H-1
Attack 54.145832 Satan Scan Main Screen H-1
Attack 54.145832 Satan Scan UDP Drill Down H-2
Attack 54.145832 Satan Scan TCP Drill Down H-2
Attack 54.145832 Satan Scan TCP Slice H-3
Attack 54.195951 Mscan H-3
Attack 41.162715 Portsweep H-4
Attack 52.130655 Ping of Death H-4

Table

3.1.

4.1.
4.2.
4.3.
4.4.

o.1.

5.2.

List of Tables

Page
Packet Fields Used in Gene Construction 3-8
Code Version Overview i 4-2
Matrix Fields Used in Code Versions 2.0, 3.0, and 4.0 4-8
Beta Crosschecking Field Catagories 4-12
Full Crosschecking Field Categories 4-13
Lincoln Lab Attacks Test Results 5-16
False Positive Test Results 5-17

xi

Abbreviation

AFIT
AIDS
AIS
ARP
BIS

CIS
DARPA
DoD
DoS
EAs
GAs
GAO
GASSATA
GOPHER
GUI
HIDS
ICMP
ID

IDS
InfoCon
ISSA
MAC
MIT
MitM

MPA

List of Abbreviations

Air Force Institute of Technology

Application-based IDSo
Artificial Immune System
Address Resolution Protocol

Biological Immune System
Computer Immune System
Defense Advanced Research Projects Agency
Department of Defense
Denial of Serviceo
Evolutionary Algorithms
Genetic Algorithms
Government Accounting Office
Genetic Algorithm for Simplified Security Audit Trails Analysis
Graphically Oriented Pattern Honing and Evaluation Repository
Graphical User Interface

Host-based IDS
Internet Control Message Protocol
Intrusion Detection
Intrusion Detection System
Information Condition
Information Systems Security and Assurance
Media Access Control
Massachusetts Institute of Technology
Man in the Middleo oL

Multiple-Packet Attack

xii

Page
2-9

1-2
1-4
1-6
2-6
1-4
1-11
1-1
1-2
2-4
2-3

1-1

4-14
1-3
1-2

1-12
1-3
1-1

4-10

5-28

1-11
1-4

3-1

Abbreviation
NIC
NIDS
TCP
TTL

UDP

Network Interface Card

Network-based IDS . .

Transmission Control Protocol

Time To Live

User Datagram Protocol

xiii

Page

1-2
1-11
1-12

1-12

AFIT/GCS/ENG /02M-02

Abstract

Given the increasingly prominent cyber-based threat, there are substantial research
and development efforts underway in network and host-based intrusion detection using
single-packet traffic analysis. However, there is a noticeable lack of research and develop-
ment in the intrusion detection realm with regard to attacks that span multiple packets.
This leaves a conspicuous gap in intrusion detection capability because not all attacks
can be found by examining single packets alone. Some attacks may only be detected by
examining multiple network packets collectively, considering how they relate to the “big

picture,” not how they are represented as individual packets.

This research demonstrates a multiple-packet relational sensor in the context of a
Computer Immune System (CIS) model to search for attacks that might otherwise go
unnoticed via single-packet detection methods. Using relational schemata, multiple-packet
CIS sensors define “self” based on equal, less than, and greater than relationships between
fields of routine network packet headers. Attacks are then detected by examining how the

relationships among attack packets may lay outside of the previously defined “self.”

Furthermore, this research presents a graphical, user-interactive means of network
packet inspection to assist in traffic analysis of suspected intrusions. The visualization
techniques demonstrated here provide a valuable tool to assist the network analyst in
discriminating between true network attacks and false positives, often a time-intensive,

and laborious process.

Xiv

Using Relational Schemata
in a Computer Immune System
to Detect Multiple-Packet

Network Intrusions

I Introduction
1.1 Motivation

As we become more dependent on computers, the potential becomes greater for
attacks on computer systems to cause more significant damage. In fact, the United States
Government Accounting Office (GAO) reports an “ever-increasing number of cyber threats
and attacks occurring over the Internet” and declared that, “Thousands of potential cyber
attacks are launched against Department of Defense (DoD) systems and networks daily”
[USGAOO01]. We need to protect ourselves from these attacks. Regrettably, we are not
protecting ourselves to an acceptable level. According to Internet Security Systems, Inc.,
“Current government systems are protected by a patchwork collection of tools of dubious
quality” [Durs99]. To ensure that governmental systems are protected to the highest extent

possible, those tools need to be improved.

There are many tools used for computer protection and security, including firewalls,
anti-virus software, file integrity checkers, and effective user authentication policies. How-
ever, none of these methods of defense is a complete solution in and of itself. The best
defense is defense-in-depth, or a layered defense [Mand01]. Even in a layered defense, how-
ever, each layer needs to be as robust as possible because the total system is only as secure
as its most vulnerable layer. One such layer of protection is the Intrusion Detection System
(IDS). IDSs do just what the name implies; they try to detect intrusions or unauthorized
activity on the computers or networks that they are protecting. The goal of this thesis

investigation is strengthening the current IDS technology to detect more attacks.

1-1

1.2 Background

In the past, IDSs have been categorized into two types: those that reside on a
network, and those that reside on a host, or the computer under attack [Sans01, Bace01].
More recently, a another type of IDS has begun to has emerged as its own type of intrusion
detection system. In this third type the intrusion detection sensors have been incorporated
into system applications [Almg01]. Here they shall be referred to as simply network-
based IDS (NIDS), host-based IDS (HIDS), and application-based IDS (AIDS). These
three types of IDSs have their own strengths and weaknesses; the strengths are discussed,

in a comparison fashion, alluding to the weaknesses.

Some benefits of NIDSs are that they typically cost less to manage than a series of
HIDSs. Since NIDSs typically monitor real-time network traffic, they make it harder for an
intruder to remove evidence of his attack. Another advantage of NIDSs is that they can be
placed outside the firewall, detecting attacks that do not even penetrate the firewall. This
is useful in identifying patterns of malicious activity, perhaps providing forewarning of an
upcoming, potentially successful attack. Finally, NIDSs can detect attacks that host-based
IDSs miss, such as many IP-based denial of service (DoS) attacks. [ISSI9S]

Host-based IDSs, on the other hand, have their own benefits, which may sometimes
make them more effective than network-based or application-based IDSs. For instance,
HIDS can handle encrypted traffic, something NIDSs have difficulty with. HIDSs also
allow for a stronger forensic analysis of the attack, as they are capable of monitoring host-
specific system activities, such as file transfers, file permission changes, and application-
centric tasks. Finally, HIDSs can detect attacks that NIDSs cannot possibly detect, such

as those that occur on the host itself and not across the network [ISSI98].

Application-based ID used to be considered a subset of host-based ID [Bace01]. This
is largely due to the fact that any application must reside on a some kind of computer
host, and because AIDs and HIDs share some of the same strengths, such as being able to
handle encrypted traffic. More recently, AIDs have been incorporated into system network
applications. For instance, a data-collection module has been implemented in an Apache

Web server application to serve as an intrusion detection sensor [Almg01]. This type of

1-2

detection shifts away from the traditional log file analysis of other AIDs to complement
current network-based and host-based detection [Almg01]. Ideally, a system of protection
would have NIDSs monitoring the network, several HIDSs monitoring individual hosts,
and AIDs to monitor applications — again, a layered defense. This research focuses on one
of those layers in an effort to improve the security of the overall system, that layer being

the network IDS.

Just as there are different types of IDSs, there are two techniques of intrusion de-
tection (ID): signature-based detection, also called misuse detection, and anomaly-based
detection [Grah00]. Signature-based detection strives to match potential attacks against
a previously defined set of attack “signatures,” while anomaly-based detection strives to

detect patterns of activity that are departures from normal activity. [Ghos99]

An often-significant drawback of anomaly detection is determining if the IDS alert
is based on an actual attack or is based merely on benign, though anomalous, activity.
The latter is termed a “false positive.” Determining if an alert is a true positive or a false
positive consumes much time, resources, and attention largely because the primary means
of network packet inspection is textual, meaning, the analyst must wade through network
packets, inspecting one packet at a time. To mitigate this burden this research introduces a
user-driven, interactive, visual technique for network packet inspection and analysis. With
the assistance of a Graphical User Interface (GUI) the network analyst can more quickly

and efficiently swim through the sea of network packets, looking for an intrusion.

Most of the currently available network IDSs utilize packet signatures to detect known
attacks. Typically a network IDS will have a database of attack signatures, and as network
traffic is monitored, the IDS checks to see if any of this traffic matches the stored signatures.
While this is a good method for detecting known attacks, it also means that these IDSs
will likely not catch unknown attacks. This is because with unknown attacks, there is
no previously defined signature with which to compare incoming network traffic. What
may be more alarming is that even known attacks need to be modified only slightly to
change the signature of the attack and slip past the IDS. Clearly, network-based intrusion

detectors need a more reliable method to detect both known and unknown attacks.

1-3

Much work and study has been done to improve the present capability of net-
work IDSs, including the use of data mining, state-based systems, and manual detection
[LeeW99, Me98, Kemm01]. One area of research that holds much promise in detecting
intrusions is the use of an Artificial Immune System (AIS) or Computer Immune System
(CIS) [Will01, Soma97]. Computer immunology is a special brand of anomaly-based detec-
tion where the computer imitates the body’s natural protection mechanisms, treating an
invader to the body, such as a virus, as an attack. This is such a very interesting concept

that it is explored further in this thesis.

Nearly all of the systems mentioned above presently target single-packet attacks,
sometimes using a simple counter to detect numerous single-packet attacks. This counter
mechanism is not sufficient, as discussed in Chapter II, because not all attacks are single-
packet attacks. Thus, some attacks may go unnoticed with single-packet detection alone.
For example, the well-known Man In The Middle (MitM) attack can be perpetrated by
an attacker through desynchronizing communications between two other parties. In the
MitM attack, an attacker has a sniffer on the communications path between the two parties
and can monitor all traffic lowing back and forth. In this instance, if the attacker can
desynchronize communications between both parties, he can establish his own communica-
tions with each, and reproduce the traffic that the other was sending. He may also modify
this reproduced traffic to suit his needs. This is useful for overcoming one-time password

security systems like SKEY, or ticketing authentication systems such as Kerberos. [Jonc95]

Figure 1.1 (a) shows a routine network session, with a three-way handshake and
data being sent. The letters S and A represent Transmission Control Protocol (TCP)
SY N and ACK fields set to one, respectively, while the C' and S depict TCP client and
server sequence numbers. This is discussed more in depth in Section 1.4. The right hand
side, (b), shows how an attacker, sending the shaded packets, can desynchronize this same

traffic and cause confusion between the parties, allowing him to inject his own data.

In this scenario the attacker sends a reset packet with the spoofed client’s sequence
number, causing the server to ignore any further packets from the true client with that
sequence number. This desynchronizes the communications between the client and server,

enabling the attacker to execute his assault. The attacker then initiates his own session

1-4

Routine Traffic Attack Scenario

Py

o ETe T]
. en
Server Client | Sever p, [[s[A] s [e. |

— Ul le [| <& R/ [e] |
— A & & | S Al]
— Ul els | — [[s[Al s [a]
— [l]alcals [oa | <= [[]al & [s |

41 ‘ ‘ ‘A‘ A-A, | S ‘F&)JseData‘

€ (b)

Figure 1.1 Man in the Middle Attack Scenario
*This figure is a modified version of Figure 2 in [Jonc95]

with the server, depicted by packet Ps,, with the attacker’s initial sequence number Ag
and the forged address of the client. At this point, the client will continue to send data
which the server will ignore since the server’s connection has been reset. This allows the
attacker to copy, or “sniff” selected data from the client and present it to the server as

data from the attacker. [Jonc95]

The devious part of this attack is that the intruder sends only packets that might very
well be seen in actual network traffic, making the attack hard to detect by single-packet
monitoring IDSs. Specifically, the packet that desynchronizes the communications between
the client and the server is depicted in Figure 1.1 (b) as packet Ps. This packet could very
well be seen in normal network activity, making it difficult to notice an attack in progress.
Only when viewed in the larger context, that of the other packets flowing through the
network, can this type of attack be detected. This is what is meant by multiple-packet

intrusion detection.

1-5

1.8 Research Problem

The MitM attack described previously is just one example of a multiple-packet attack.
Other examples include Address Resolution Protocol (ARP) and IP spoofing, as will be
discussed more in Chapter V. Still other examples of multiple-packet attacks include
scans and probes. Currently scans and probes are typically detected via simple counter
mechanisms. If a specified number of scans occur in a specified time, then it is deemed
an attack [Stan00]. This is not necessarily effective, because if an attacker can guess the
counter value, he has to only scan one less than that value to go undetected. He might
then wait until the specified time has expired and resume his stealthy attack. This is an

example of a “low and slow” attack.

Since there are attacks, such as the multiple-packet MitM attack, which will likely slip
past a simple counter, a mechanism for detecting these multiple-packet attacks is needed.

This research addresses developing that mechanism.

1.4 Multiple-Packet Detection

This thesis effort concentrates on improving current IDS capabilities by providing an
enhanced venue for detecting not only known multiple-packet attacks, but also unknown
multiple-packet attacks. As stated earlier, this research is geared toward NIDSs. This is
because NIDSs, sitting at the entry point to a network, can detect an attack even before it
penetrates the firewall. This makes a NIDS a valuable means of protection; one that should
be as robust as possible. Although this research is tailored to network-based IDSs, it is
certainly likely that the means of detecting multiple-packet attacks on networks discussed

here might be extended to host-based IDSs as well.

In order to detect multiple-packet attacks, this document defines schemata based on
the relationships among packets flowing through the network. These schemata are then
used to define patterns of normal and abnormal network traffic, the heart of anomaly-
based detection. To accomplish this feat, relationship schemata are addressed as simple
equal, greater-than, or less-than relationships between the fields of two network packets.

Further research might extend these relationships to include other nominal, ordinal, or

1-6

even quantitative relationships containing formulas that may be user-defined. Multiple-
packet detection may also be enhanced to detect attacks that span three or more packets.
As a minimum, the proof of concept that multiple-packet attacks can be detected via
relationship schemata is demonstrated here via simple equal, greater-than, and less-than

relationships between fields of two packets.

Section 1.2 discussed how the MitM attack could be perpetrated, but not how it could
be detected with respect to packet relational patterns. To understand this, we broaden the
view of the attack scenario to include one more packet, and its relationship to the other

packets flowing through the network.

Figure 1.1 (a) showed normal network traffic and how, after receiving a syn/ack
from the server, the client continued with its three-way handshake and sent its own ack
back in response. If Figure 1.1 (b) is examined, it can be seen that the attacker sends
the reset request to the server, desynchronizing this communication path. However, the
reset is sent to the server, not to the client. Since the client does not know that the server
has dropped its session, the client continues sending its traffic, just as it normally would if
there were no attack taking place. This is shown in Figure 1.2 with the addition of packet
P5,. This additional packet is sent from the true client, just as was shown in Figure 1.1

(a). By examining this addition in Figure 1.2, a clue that something is amiss can be seen.

In this broader view of the attack, two network packets can be seen, both seemingly
coming from the same client with the same sequence numbers, but saying two different
things. In packet Ps, the spoofed client’s packet, the client is requesting a reset. However, in
packet Ps,, the real client’s packet, the client is sending an acknowledgement to the server.
This would not normally happen in network traffic, as sending contradictory messages
would quickly cause chaos in the network. This anomaly can be detected with relational

schemata.

With relational schema it can be determined that these two packets are coming from
the same client, as they have the same client sequence number (equal relationship), but
they are saying two different things, as the reset, acknowledge, and server sequence number

fields are different (not equal relationship). This can be shown mathematically with the

1-7

Attack Scenario

P

LT

s| |
Server Client/Attacker
s [[sl4] |

L Rl fla] |
01 2

3 4

P.

[l e [s |

01 2 4

Lo [A
= (A > []

P

= [l & [s |

P

«—— | | |al aa | s, |FaseDaal

Figure 1.2 Man in the Middle Attack Expanded
The center box shows a spoofed, and a real client packet

addition of one more subscript to note the field number from left to right, as depicted in
Figure 1.2. In this instance we have three different ways of determining that there is an
inconsistency in two packet transmissions, which is to say three possibly different means of

detecting this one attack from the two network packets under consideration. The relational

patterns that represent abnormal behavior are:

(P33 = Ps3q3) N\ (P30 # P34.,0)

or

(P33 = P353) N\ (P32 # P34,2)
or
(P33 = P3q3) N\ (P34 # Ps3q.4)

In short, these relationships represent the client (identified by client sequence num-
ber) saying two different things in three different ways. A benefit of using this relationship
mapping is that equal/not equal relationships are easily converted to a string of ones and

zeros, with equal mapped to one, and not equal mapped to zero. These strings of ones and

1-8

zeros can be thought of as digital “chromosomes” that contain instructions which deter-
mine the makeup of the system much like human chromosomes contain instructions which
determine the biological makeup of each of us. These chromosomes can then be used to

define sensors to search for intrusions in a Computer Immune System.

1.5 Computer Immune System

A Computer Immune System is useful in detecting intrusions in a network by emu-
lating the biological processes of the human body. In a CIS, sometimes called an Artificial
Immune System (AIS), “self” may be defined by “building the normal behavior patterns of
a monitored system” [KimOla, Kim0O1]. This research does just that; it represents self as
digital chromosomes, constructed from normal patterns of network activity. In the human
body, a virus or infection constitutes non-self, and the body’s immune system strives to
detect and repel such foreign entities [Harm01, Will01]. A CIS used in network ID strives
to emulate this process in a digital, vice physical manner, detecting network intrusions
instead of biological intrusions. As digital chromosomes in this research represent normal
network activity, any pattern of activity that does not match a self-chromosome is consid-
ered malicious, possibly an intrusion. A central component of the CIS is the antibody, a
mechanism for detecting non-self activity. Antibodies can be explicitly defined, as might
be useful in signature-based detection, or implicitly defined, as merely activity not match-
ing previously defined chromosomes. The latter method is used in this research, as within
the testing conducted, the concept of self does not change after it is defined. Explicitly
defining antibodies may be useful, however, as they might then be assigned a temporal life
span and evolve with the changing concept of self. This is discussed more in Chapter II.
A brief overview of how a CIS can be used in detecting multiple-packet network intrusions

follows, as well as some possible limitations to this approach.

1.6 Approach

In using a CIS to detect multiple-packet network intrusions, a number of steps must

be accomplished. These steps are:

1-9

1.6.1 Develop Relational Genes. Defining the genes that can be used as a vo-
cabulary for representing self and non-self is the first step that needs to be accomplished
in intrusion detection using a CIS. Since this research is focused on relational patterns,
relational schemata are used in defining genes of network activity. As discussed in Section
1.4, relational patterns can be defined as equal/not-equal relationships between fields of
different network packets. This is implemented in Section 4.1, where a 0 bit represents a
not-equal gene, and a 1 bit represents an equal gene. This implementation is expanded
upon to include less-than, and greater-than, and equal relationships, as discussed in Chap-
ters III and IV. Here, multiple fields of packets (two packets, two fields, at first) are
compared, with less-than, greater-than, and equal relationships between two fields repre-

sented by a 01, 10, and 11 bit strings in the gene.

1.6.2 Develop Relational Chromosomes. After genes can be built with the rela-
tionship mechanism mentioned above, the genes are used as cyber-genetic building blocks
to form chromosomes that represent self. Creation of chromosomes is achieved by using a
multi-dimensional matrix to hold all combinations of field relationships (genes), with each
cell in the matrix housing multiple chromosomes. These chromosomes are generated deter-
ministically by constructing the set of all gene combinations encountered during training
(with respect to the number of fields that are selected to be compared). For the purposes
of this research, relationship patterns between two, three, and four fields of the total n

fields will be examined.

1.6.3 Generate Antibodies. If antibodies are explicitly defined, they might be
generated in much the same way that chromosomes are generated. That is to say, anti-
bodies are made up of the same relational genes as chromosomes, with the exception that
antibodies represent non-self, whereas chromosomes represent self. Therefore, after self is
defined via chromosomes, antibodies can easily be generated deterministically by exam-
ining all possible antibodies, and discarding those that match self (chromosomes). This
process of discarding antibodies that match self is called “negative selection.” After nega-

tive selection, only antibodies that represent non-self (non-normal network activity, such

1-10

as intrusions) will remain. These antibodies can then be used in a CIS for the detection

of network attacks.

1.6.4 Construct Training Sets. After the methods for defining genes, chromo-
somes, and antibodies have been defined, these methods can be used with actual data to
instantiate the model. Sets of normal (self) chromosomes are constructed by training the
chromosomes on attack-free network activity. In a perfect world, the totality of these chro-
mosomes represent the totality of normal network activity. This is loosely analogous to the
chromosomes in our body representing an individual organism (through the instructions
that they carry). These self-chromosomes can then be used in reducing and refining the

(non-self) antibodies during a negative selection process.

1.6.5 Construct Testing Sets. Testing sets are used to validate the function
of the antibodies in detecting network intrusions. These sets consist of self (attack-free
activity), non-self (network attack activity), and sets of intermixed self and non-self. Once
chromosomes are generated with the use of training sets, the testing sets are inspected for
patterns of activity that do not match those chromosomes. Since chromosomes represent
self, packet relationships in the testing set that do not match these chromosomes will

represent non-self, possibly an intrusion.

1.6.6 Detection Tests. Tests are run in a comparison fashion to determine how the
number of fields compared affect speed and effectiveness of the relational multiple-packet
sensors, as well as giving an indication of the level of false positive, true positives, false
negatives, and true negatives encountered by this system. In order to obtain a diverse
and repeatable testing set, some of the data used was obtained from the 1999 Defense
Advanced Research Projects Agency (DARPA) intrusion detection evaluation conducted
at the Massachusetts Institute of Technology (MIT) Lincoln Laboratories [LLab99].

1.7 Scope and Limitations

There is a plethora of protocols with which an attacker may choose to attack his

victim. This study is limited to the Transmission Control Protocol (TCP), the User Data-

1-11

gram Protocol (UDP), and the Internet Control Message Protocol (ICMP), as this makes
up the majority of all current network activity. As these protocols ride on top of the In-
ternet Protocol (IP) and use MAC addresses in communication, some IP fields as well as
MAC address fields are also used. Additionally, this research addresses only attacks that
can be detected without regard to packet payload, or the data portion of the packet. While
it is true that there are a vast number of attacks that cannot be detected without the ex-
amination of packet payload, this problem is currently beyond the scope of this detection
strategy. Currently, signature-based ID is the primary means of detection with regard to

attack payload, and it will likely remain so for some time.

Each network packet has a variety of fields. However, it is not practical or necessarily
meaningful to compare a relationship between a given field of one packet, and a different
field of another. For instance, it is very unlikely that there is an equal /not equal relationship
between the source IP address field in one packet and the Time To Live (TTL) field in
another that would provide any useful information. Hence, this research considers only

relationships between similar fields of a network packet.

As the number of relationships between all possible fields of all possible packets
is intractable, some smaller number needs to be addressed. Because this research is a
proof of concept with respect to relational schemata in intrusion detection, it is limited
to relationships between two packets at a time. With two packets comparing any two
fields, this yields k2 possible relationships, with & being the number of fields compared.
However, since the combinations of the fields are an AN D relationship, and since (A and
B) yields the same relationship information as (B and A), this number can be reduced to %
relationships. It should be kept in mind that if this research is expanded beyond the simple
intersection of equal, greater-than, or less-than relationships, the search space might not
be reducible by half as is done here. For example; there are many types of relationships,
from nominal, such as equal/not equal, to ordinal, such as greater-than/less-than or equal
to, to quantitative, such as x = y * 2. The intersection of these relationships is not the
only method of comparison. If unions and intersections are defined through formulas not

to be bijective, more interesting results may be attainable. This research examines the

1-12

nominal equal, and ordinal greater-than and less-than relationships, as this conveniently

maps to the binary representation used in the CIS chromosomes.

1.8 Roadmap

This chapter provided an introduction to intrusion detection. It addressed why ID is
needed to combat the current threats to DoD computer systems and networks. Also dis-
cussed were the differences between host-based and network-based ID, and the differences
between single-packet and multiple-packet attacks. How a Computer Immune System can
be used in conjunction with relational schemata to detect network intrusions was also

addressed. This information is covered in greater detail in the following chapters.

Specifically, Chapter II covers related work, detailing what has been done in the area
of CIS use in network intrusion detection, and how this research differs from previously
existing work. Chapter III deals with the top-level implementation of the research, elabo-
rating on the approach that is used in the rest of the paper. Chapter IV delves into the
implementation of this research in greater depth than in Chapter III, addressing how the
actual relational CIS is coded in different versions of code and why. Chapter V discusses
experiments, and provides statistical data along with results. Finally, Chapter VI provides
conclusions to this research, along with presenting possible avenues of future work in this

arena.

1-13

1I. Literature Review
2.1 Intrusion Detection

A computer or network intrusion can be categorized as an attack that is considered
to be successful from the opinion of the victim, meaning that the victim has suffered some
loss or consequence [Alle00]. An intrusion differs from an attack, in that an attack may be
unsuccessfully conducted. Therefore, by some definitions, an attack is not necessarily an
intrusion, although an intrusion is certainly an attack. This research considers intrusion
detection to be a mechanism that strives to detect not only intrusions, but also attacks,

successful or not.

An example of this is detection of scans and probes. Scans are typically used in
an attempt to map a network or search for victim hosts, such as scanning a network to
find which addresses belong to actual computers [Stan00]. An attacker conducts probes
to search for vulnerabilities in hosts that may be exploited. The lines of distinction are
blurred, however, as probes and scans are often conducted simultaneously, so they are often
referred to as one in the same. Even further clouding the distinction is that an attacker
may use scans or probes simply to flood an intrusion detection system, not to actually
map a network or find a vulnerability to exploit. Conversely, a scan may be conducted for
legitimate reasons, such as a web search engine, or to discover publicly available resources
[Bace01]. Ultimately, many events will need to be examined by a system analyst before

the actual activity is classified.

2.2 Intrusion Detection Systems

The types and methods of intrusion detection (ID) mentioned in Chapter I are of-
ten combined into one product to provide more than one layer of defense. For example,
RealSecure, an IDS developed by Internet Security Systems, provides both host-based and
network-based ID. Its host-based ID sensor analyzes system logs, while the network-based
sensor monitors network packets in search of an attack [ISS00]. Similarly, EMERALD, the
Event Monitoring Enabling Responses to Anomalous Live Disturbances IDS developed by

SRI International, uses both anomaly detection (in the form of statistical profiling) and

signature-based detection, striving to develop a scalable IDS that can detect attacks in

real time [Porr97].

This “blurring of lines” makes comparison of ID technologies and the comparison of
IDSs themselves a difficult matter. To further complicate matters, there are other methods
of computer security that have not been covered, but are often called IDSs. These methods
include honeypots, fishbowls, and padded cells, which strive to divert an attacker from a
real system into a system where the attacker can be controlled or monitored, perhaps
gaining insight to the methods and motivations of a hacker to avoid further hacking. Some
would even argue that somewhat unconventional means such as micro-cameras constitute

intrusion detection technologies [Glob01].

As the realm of ID techniques and systems span such a broad area of concern, this
research will not attempt to cover all the differences between each of the efforts, rather it
focuses on a subset of that area; that subset being network intrusion detection. This area
is concentrated upon not only because network IDSs make up the majority of commercial
intrusion detection systems, but also because network IDSs have several advantages over

other IDSs, as discussed in Chapter 1.

A few of the more well-know NIDSs that use signature detection, also called mis-
use detection, include Snort, Emerald, Bro, NetProwler, Cisco IDS (formerly known as
NetRanger), and ASIM [Roes01, Porr97, Paxs98, Axen01, CiscO1, Alle00]. These systems
match packets to previously defined signatures of known malicious activity. An example

of the types of signature these IDSs use to detect an attack is shown in Figure 2.1.

alert tcp any any - > $HOME_NET 111 (content: “|00 01 86 a5|”;
\'msg: “mountd access";)

Figure 2.1 Example Intrusion Detection Signature

The Snort signature shown in Figure 2.1 detects the mountd buffer overflow attack,
which allows an entity to gain administrative access to an NFS server [Roes0la, Cert98].
Here, the Snort IDS will alert on any Transmission Control Protocol (TCP) packet bound

for port 111, the portmapper port, with the contents “00 01 86 a5”.

This type of signature matching is typical of signature-based network IDSs, matching
network packets against a database of known attacks. However, utilizing these canned
signatures does not allow an IDS to detect unknown attacks, or even attacks which deviate
slightly from the stored signature. This would leave a gaping hole in the area of intrusion

detection, were it not for anomaly detection.

Despite the fact that anomaly-based ID is still in its infancy, many companies are
beginning to incorporate it into their products. As the benefits of anomaly detection
become more well known, and as its high number of false positives are mitigated with checks
and balances and user-interactive components like the one addressed by this research, more
and more security products will likely include anomaly detection engines. Current IDSs
that contain both signature-based and anomaly detection modules include EMERALD,
NetStat, CMDS, RealSecure and NFR [Porr97, Kemm01, Proc01, ISS00, NFRS01].

2.8 Methodologies in Anomaly Detection

There are several forms of network anomaly detection. By definition, an anomaly
detector is any mechanism that strives to categorize normal network activity and detect
intrusions as events that constitute abnormal activity. The primary components of anomaly
detection are the methods used to define normal activity and the methods used to determine
abnormal activity. Most often, IDSs strive to categorize an activity into one set, with the
second set being the compliment of the first. Some of the methodologies used in anomaly
detection are neural networks, data mining, data fusion, Genetic Algorithms (GAs), and

immune system modeling.

2.3.1 Neural Networks. Neural networks offer several advantages in ID. Neural
networks can be fast, allowing the intrusion to be detected before much damage has been
done. Also, neural networks offer a predictive capability of attacks due to their probabilistic
nature as natural generalizers. Perhaps most importantly, however, neural networks offer
the ability to “learn” normal and non-normal network traffic, allowing them the possible

potential to detect unknown attacks [Deba92, Forr98, Rhod00, Ghos99a].

Neural networks also have some significant disadvantages, however. First, they re-
quire vast amounts of data to train [Forr98]. To accurately detect intrusions, they have
to be trained on large amounts of data, which is often difficult to obtain. Because of the
vast amount of data required in training, training is not conducted quickly, as detection
may be. Second, and most importantly, neural networks offer only a “black box” capabil-
ity in detection; meaning that “the connection weights and transfer functions of various
nodes are usually frozen after the network has achieved an acceptable level of success in
identification of events” [Forr98]. Therefore, the accuracy of the system is often unknown
[Forr98]. Not knowing the accuracy of the IDS is compounded by the problem that many
organizations blindly trust their IDS. This may establish a false sense of security in the

IDS, making detection of an intrusion even less likely.

2.3.2 Data Mining. The majority of work with using data mining in intrusion
detection is conducted at Columbia University [LeeW99, LeeW99a, LeeW00, LeeW00a].
Their work uses predominantly Classification, Link Analysis, and Sequence Analysis
as techniques for data mining, and incorporates both misuse and anomaly detection.
Classi fication maps data into one of several pre-defined categories, Link Analysis deter-
mines relations between fields of the database, and Sequence Analysis models sequence

patterns [LeeW98].

Like neural networks, data mining also suffers from several drawbacks. First, data
mining of anomalous activity tends to produce large numbers of false positives. Second,
it involves vast amounts of computing power, which can make data mining inefficient.
And third, it involves vast amounts of training data and is significantly more complex
than traditional means, making it somewhat unusable. In fact, Dr. Lee, a well-respected
scientist now working at the Georgia Institute of Technology, stated that “successful data-

mining techniques are themselves not enough to create deployable IDSs” [LeeWO0O0b].

2.3.8 Genetic Algorithms. Genetic Algorithms (GAs) are the most widely
used and well-known form of Evolutionary Algorithms (EAs), which are algorithms that
are inspired by evolution [Mich00]. GAs encode a potential solution to a problem in a

“chromosome-like” data structure, applying recombination and/or mutation operators to

2-4

these structures to preserve critical information. GAs are often used in an attempt to find

maximum or minimum values in a search space that is too large to search deterministically

[Whit94].

With GAs, variables that represent parameters are first discretized in an a priori
fashion, with the range corresponding to some power of two in order to efficiently use a
binary representation. In GAs, most chromosomes are generally larger than 30 bits, as
anything smaller can normally be enumerated exhaustively. The GA process is as follows

[Whit94]:

2.8.8.1 Initial Population Creation. An initial “population” of chromo-
somes is first chosen. This is typically performed in a random manner, although if infor-
mation about the sought solution exists beforehand, this may be incorporated to bootstrap
the initial population. After creation each chromosome is evaluated and assigned a fitness

value.

2.8.3.2 Selection. Selection is applied to the current population to produce
an intermediate population. Common types of selection include “tournament” selection

and “roulette wheel” selection.

2.3.8.3 Recombination/Mutation. ~— Recombination and/or mutation is then
applied to the intermediate population. In recombination, sometimes called “crossover,”
two members of the population are combined to produce a child. With mutation, one

member is simply mutated to produce a child.

2.83.8.4 Next Population. Lastly, child or parent members of the interme-
diate population are chosen in a “with replacement” or “without replacement” manner.
These members will make up the next population in the GA. This completes one generation
of the GA. The algorithm then loops back to 2.3.3.2 until some termination criterion is

reached, such as finding a certain value, or reaching a specific generation or time.

Since GAs have been shown to effectively search an innumerable search space, more

and more research is being conducted to their applicability in intrusion detection [Me98,

Neri00, Will01, Brid00]. For example, in the Genetic Algorithm for Simplified Security
Audit Trails Analysis, (GASSATA), Mé used GAs to search for 24 attacks in 28 events,
making his search space a 24 by 28 matrix [Me98]. Neri’s GA intrusion detection mecha-
nism, REGAL, took an input set of data and, after training with the GA, output a set of
symbolic classification rules [Neri00]. Williams used GAs in his algorithm in the affinity

maturation process, which is discussed more in Section 2.4.7 [Will01].

2.4 Artificial Immune Systems

An Artificial Immune System (AIS), sometimes referred to as a Computer Immune
System (CIS) when applied to the computer field, models biological processes in a digital
manner. One of the first uses of a AIS in computer security was in the virus detection
arena [Keph97, Keph97a, Dasg98, Forr97, Lamo99|. Here, the body’s immune system was
modeled to overcome the static virus detection capabilities of signature-based detection
models. Just as the Biological Immune System (BIS) adaptively counters new viral threats
to the body, the AIS may adaptively counter new threats to the computer. In order to
understand many of the functions of an AIS and how they relate to a BIS, some biological
terminology must be addressed, along with references of how it relates to the computer.
Some excellent documents covering many aspects of an AIS can be found in [Hofm99,
Hofm99a, Harm00] and [Will01], and those details shall not be covered again here. What
is covered are the essentials required to understand the context of this thesis. However, the
aforementioned documents are suggested reading for a more comprehensive understanding

of the subject matter, and are well worth the time.

2.4.1 Pathogen. A pathogen, a term given to encompass disease-causing micro-
organisms such as viruses, bacteria, and fungi, are parasitic organisms [Jane97]. These
type of infectious agents must be detected and eliminated from the body. The problem
of detecting pathogens is often referred to as distinguishing “self” from “non-self,” which

correlates to the body and pathogens, respectively [Hofm99).

2.4.2 Immunity. Immunity refers to the mechanisms the body uses to protect

itself from foreign bodies (pathogens). The human immune system is indirectly capable

2-6

of recognizing cells and proteins that make up the body. When components not of the
body are detected, defense mechanisms strive to protect the body from these components.

Immunity can be divided into innate immunity, and adaptive immunity.

2.4.2.1 Innate Immunity. Innate immunity refers to those means of pro-
tection that are present from birth, such as skin and mucous membranes, coughing and
sneezing reflexes, and a vast array of specialized cells that seek out and destroy invaders.
Components of the innate immune system may affect pathogens directly, or enhance the
effectiveness of other immune system reactions to them. Examples are a phagocyte cell
engulfing and digesting an invading microbe, or a T-cell punching a hole in the cellular
membrane of the invader, causing water to rush in and explode it. The innate immune
system “provides a rapid first line of defense, to keep early infections in check, giving the

adaptive immune system time to build up a more specific response” [Hofm99a].

2.4.2.2 Adaptive Immunity. Innate immunity is not enough to protect the
body from invaders, as microbes evolve rapidly in an attempt to overcome the body’s
originally programmed defense mechanisms. Adaptive immunity allows for the body to
adaptively detect and destroy invading specific pathogens. This is exactly why the im-
munity model is emulated in cyber-defense. Just as the body can detect and respond to

foreign and adaptive intrusions, so can the computer.

2.4.83 Gene. Gene segments carry information for the production of a unique
protein or enzyme, and govern both the structure, and the metabolic functions of a cell
[CEnc00]. In this way they govern the makeup of the entire organism at a very low level.
Genes are similarly one of the lowest levels of abstraction of the CIS in this research. Much
like genes are used by Kim and Bentley to construct antibodies [KimOla], genes of this

research are used as building blocks to construct both chromosomes and antibodies.

2.4.4 Chromosome. According to Columbia Electronic Encyclopedia, sixth edi-
tion, a chromosome is “the structural carrier of hereditary characteristics, found in the

nucleus of every cell” Just as a BIS chromosome carries hereditary characteristics of the

species as a linear arrangement of genes, a cyber-chromosome can be considered to carry

information about the characteristics of the network or computer system.

2.4.5 Antibody. In the body, antibodies, also called immunoglobin, are proteins
produced by plasma cells, or B-cells (a type of lymphocyte, white blood cell). Upon
binding to an antigen via Y-shaped pathogen binding sites, antibodies stimulate the B-cell
to produce copies of the antibody. These antibodies, which are all designed to detect the
antigen, mark the antigen for destruction by a phagocyte and the complement system. The
antibody is shown in Figure 2.2 along with a visual representation of the immune system,
taken from [Hofm99]. Just as an antibody in the BIS is designed to detect a pathogen, an
antibody in the ID AIS is designed to detect an attack.

pathogens skin physiological innate immune adaplive immune

conditions system system
t*), ¢

' pha hocyte
Anti body
Y 3%

© "—‘X)'.

Figure 2.2 Multilayered Immune System [Hofm99]

2.4.6 Negative Selection. The antibodies that mark pathogens for destruction
must be tolerant of self, lest they contribute in the destruction of the host body vice the
pathogen. However, B-cells will often match self after they have undergone hypermutation.
These hypermutated cells have somewhat different binding criteria than the original B-cell,
and may bind to self, which is undesirable. Negative selection, sometimes called clonal
deletion, is the process of censoring (killing) an antibody that binds to self. In intrusion
detection, negative selection has come to mean the activity that kills the entities that

detect self. Just as biological antibodies that have undergone negative selection should

2-8

only detect pathogens (and not self), digital antibodies used in intrusion detection, should

only detect non-self (normal network or computer activity).

2.4.7 Affinity Maturation. The strength of the bond between the receptor of the
antibody and the epitope (locations on the surface of the pathogen) is termed af finity. In
the body, “both receptors and epitopes have complicated three-dimensional structures that
are electrically charged” [Hofm99]. The more complementary the structure and charge of
the receptor and the epitope, the higher the affinity, and the more likely binding will occur.
Affinity maturation is the term for the Darwinian process of selecting those antibodies with

higher affinity to be replicated more often.

2.4.8 Costimulation. The costimulation process in the body is acutely complex,
with many details beyond the scope or intent of this research. However, a somewhat general
definition may be sufficient to understand its function in the body, and its usefulness in
ID. After B-cells are hypermutated in the body, they may bind to self. To block this
action, a B-cell must receive two distinct costimulation signals to be activated. One signal
is received when binding to the pathogen. This can be thought of as the bind to something
signal. Another signal is from a Th-cell, which must also bind to the same pathogen. Since
Th-cells are trained not to match self in the thymus, they should not bind to self. When a
Th-cell binds to a pathogen, it will send out a signal for any B-cells close to it. This signal
can be thought of as the pathogen signal. Therefore, an active B-cell will have received
both a bound to something signal, and a pathogen signal, telling the B-cell that it is bound

to a pathogen and not self. This process is shown in Figure 2.3 below.

2.5 Intrusion Detection Via a Computer Immune Systems

Computer immune systems have been demonstrated as successful in the area of in-
trusion detection [Dasg98, Soma97, Kim01, Kim0Ola]. Much of this research is continuing
at the Air Force Institute of Technology (AFIT), with a large portion centering around the
antibody as this is the central detection mechanism. This is why the antibody is discussed

in some detail here, even though it is only defined implicitly with this research.

— X B-cell death

Th-cell

?«

B-cell no costimulation

@<
— @€
@<

B-cell activation

costimulation

Figure 2.3 Costimulation Process
B-cells that are not costimulated die. Those that are costimulated reproduce. [Hofm99]

The antibody lifecycle is shown in Figure 2.4, with antibodies being generated to
not match self, then going through affinity maturation to define non-self as thoroughly as
possible. They then set about trying to detect attacks, and if they do not detect anything
in a specified lifetime, they die and are replaced with new antibodies [WillOla]. This model
will be utilized to the extent that the relational multiple-packet antibodies are generated
deterministically and implicitly as the complement to all chromosomes. As a complement
set, the antibodies, by definition of complement, undergo the negative selection process.
Affinity maturation is not done because the list of antibodies is complete (since they are
generated deterministically). The detection process is an off-line process, simulating how
the actual IDS would work had it actually been on line. Due to time constraints, explicitly
defining antibodies and the lifetime criterion of those antibodies were not addressed in this

research, but may be explored at a later date.

2.6 Multiple-Packet Intrusion Detection

Most of the current intrusion detection mechanisms rely on single-packet signatures
to detect attacks. Even those signatures that detect scans or probes rely solely on a
simple counter mechanism to detect the scan or probe. Experts recognize this shortfall,

as Stephen Northcutt, a well-respected author on computer security stated, “until some

2-10

’ Antibodies Randomly Created ‘

0110011011100

v
Negative Selection Match Sef

Not Match Self

A
’ Affinity Maturation (optional) ‘

vvy
—»| Detection Not Match Event

,,,,,,,,,, 2
! LifetimeReached? -~

2 (SU USSP
Costimul ated? “ ---------- ! Yes
No i

Yes !

A
Generate Alarm

| LifetimeExtended | -

Match Event

Figure 2.4 CIS Antibody Lifecycle

brilliant researcher comes up with a better technique, scan detection will boil down to

testing for = events of interest across a y-sized time window” [Nort00].

Not all multiple packet attacks are scans or probes, however. Amoroso describes a
“temporal” intrusion model, and defined an intrusion as “a sequence of related actions
by a malicious adversary that results in the occurrence of unauthorized security threats”
[Amor99]. This definition highlights that an intrusion is a sequence of actions, meaning
more than one action, and likely, more than one packet. These multiple-packet intru-
sions, whether they be reconnaissance techniques such as scans and probes, or full-fledged

intrusions such as Amoroso was describing need to be detected.

ARP and IP spoofing are other forms of multiple-packet attacks, as mentioned in
Chapter I. In fact, these types of attacks have become so dangerous that SANS Institute
has published the following in a recent alert [SANSO1a].

Once upon a time, administrators didn’t have to worry about ARP cache
poisoning and redirection because such assaults required attackers to gain direct
access to the network segment that hosted the target systems. That segment
was protected by physical boundaries. With the surge of wireless network
installations on the rise, however, the door to ARP redirection and connection

2-11

hijacking has been opened to anyone with an off-the-shelf wireless network
card. Essentially, a remote attacker who can get within range of an access
point could potentially poison client ARP caches into believing they are the
default gateway. The result? All traffic routes through the attacker.

This form of attack is demonstrated in Chapter V to be detectable with the relational

CIS structure proposed via this research.

2.7 Relational Schemata

Examining how packets of a network relate to one another as a form of intrusion
detection is nothing new. In fact, it happens thousands of times a day when network
analysts worldwide sift through network data while monitoring their networks. Often
these analysts will reconstruct entire sessions of network activity and analyze each packet
in the session to find out what the suspect was up to. In effect, they take each packet and

compare it to another to determine the “big picture” view of the network activity.

This research attempts to somewhat automate that process of multiple-packet in-
spection by using relational schemata to examine how network packets interrelate. In this
context, relational schemata are a means of detecting the above mentioned ARP and IP
spoof attacks, as well as other attacks that are detectable when viewed in a “big picture”

context.

The MitM attack shown in Chapter I has been shown to be detectable with equal /not-
equal relationships. These relationships can assist in detecting anomalous activity, where
a transmitting node appears to be sending conflicting packets. This may go unnoticed
in network traffic by a single-packet IDS, as each packet examined individually may rep-
resent a perfectly normal network packet. Only when examined in the broader context,
in the context of the other packets traversing the network, may this type of attack be
detected. Relational schemata are perfect for this function, as by their very definition they

incorporate more than one packet.

The relational representations described in Chapter III form relational multiple-
packet antibodies for multiple-packet ID. Using the CIS paradigm, this thesis shows that

relational patterns can be used to detect some multiple-packet attacks. This may increase

2-12

the security capability of current IDSs, and strengthen an important layer of the defensive

structure.

2-13

I1I. High Level Design and Methodology

The real problem is in the hearts and minds of men. It is easier to denature
plutonium than to denature the evil spirit of man.
- Albert Einstein

The previous chapters gave an overview of why a multiple-packet attack (MPA)
detection tool is necessary, and what has been done in the recent past with regard to
intrusion detection in this area. This chapter explains the methodology used in developing
an MPA detection tool using a computer immune system. Section 3.1 discusses the goals
of this research as exploring a new intrusion detection model, and developing a multiple-
packet visualization tool. The remaining sections outline, at a conceptual level, how these
goals are pursued. In pursuing a relational intrusion detection model, more than one
method of relational mapping is explored. Section 3.2 addresses the definition of packet
relational attributes used in the main thrust of this research, while Section 3.3 discusses
another method of developing relational attributes which may be more costly, yet more
effective. Section 3.4 outlines the packet protocols and values used in this research, and
Section 3.5 discusses the size of the relational space and its intractability. Finally, Section
3.6 discusses self and non-self domains, Section 3.7 discusses the use of a CIS with relational
schemata, and Section 3.8 discusses one potentially instrumental method for multiple-

packet visualization.

3.1 Goals

The main goal of this research is to detect network MPAs, or attacks that may be
detected when viewed in the context of more than a single network packet. To that end,
relationships are drawn between values of similar packet fields. These relationships are
then used to represent self and non-self domains. An important aspect of this research is
that the actual values themselves are not kept when constructing a representation, only the
relationships between those values are kept. A value is only inspected when determining the
relationship between it and another value. Finally, these self and non-self representations

are used to detect potential network MPAs.

A secondary goal of this research is to develop a user-interactive, graphical method
of multiple-packet visualization. The current method of packet analysis relies heavily on
programs such as TCPDump and Ethereal, which present data in a textual format, as
shown in Figure 3.1. While these types of tools are extremely valuable in examining each
packet individually, they do not perform well at providing the “big picture” view that is
often necessary when working with multiple packets. This research strives to demonstrate
a method of visually inspecting the values of multiple packets simultaneously, allowing the

analyst to determine packet relationships at a glance.

Al
File Edt Display Tools Help

Source

T 50, 117. A4 1 Pha) T
631850 216.93.866.1886 207.90.117.84 ¢ 40K welcome

o}

0.635506 207.90.117.84 216.93.66.186 POP Reguest: STAT
10 Q. 781847 216.93.66.186 207.90.117.84 POP Response: +0K 0 0
11 0.785902 207.90.117.84 216.93.66.186 POP Reguest: QUIT
12 0.941852 216.93.66.186 207.00.117.84 POP Response: +0K Closing
13 0,941937 216.93.66.186 207.590.117.84 TCP pop3 > B4689 [FIN, ACK
14 0,945427 207.90.117.84 216.03.66.188 TCP 64689 > pop3 [ACK] Seq
15 0,946126 207.90.117.84 216.93.66.1886 TCP 64689 > pop3 [FIN, ACK
16 1.10183% 216.93.66.186 207.00.117.84 TCP pops > 64689 [AcKk] seq |/

(=] 1 o

Ll

EFrame 7 (55 on wire, 55 captured)

E raw packet data

@ Internet Protocol

B Transmission control Protocol, sSrc Port: 64689 (64689%), Dst Port: pops (110
Source port: 64689 (64689)

pestination port: pop3 (1100

Seguence number: 1359719128

Mext seguence number: 130719143

Acknow]ledgement number: 3344963415

Header length: 20 bytes

‘i A e ci?n: 977%
H I -
DDDO 45 02 00 37 ae 7c 40 00 7f 06 ed 7b of 5a 75 84 E..7.|@ ...L.zZuT [
0010 o8 5d 42 ba fc bl 00 62 08 53 f1 d8 c7 &0 17 5b .]E... ;

M S
0020 50 22 17 4b <4 00 00 50 41 53 53 20 61 70 72 P&".K... FPASS apr
(0030 69 6C 31 32 33 0d Qa f1123.,

Ml _f’] RacmlFiaqs (tcp. flags)

Figure 3.1 Typical Packet Textual Display

3.2 Relational Design

As stated in Chapter I, there are several types of relationships that may occur be-
tween packet fields, from nominal to ordinal to quantitative. This research began with
examining simple nominal Boolean equal/not-equal relationships between packet fields as
a method of ID. When this method of detection was tested on the MitM attack described

on page 1-5, it worked only initially. That is, the MitM attack in question was detected

until it was discovered that there is a circumstance where the relationships mentioned on
page 1-9 may actually occur. These relationships occur normally if a client sends its data
and then decides to reset the connection—a legitimate action. This is contrasted to the
attack, where the spoofed client reset the connection and then the real client sent its data.

Therefore, packet order matters.

Since the order of the packets matters, the relationships between packet fields were
expanded beyond simple nominal equal /not-equal relationships, to include ordinal greater-
than and less-than relationships in place of not-equal relationships. In a stroke of genius
my Committee Chair pointed out that this provides a means of temporal packet ordering.
While the addition of ordinal relationships does increase the complexity of the problem

slightly, it is well worth the cost of determining packet order.

With this information in mind, the language that represents the relational schemata
can be defined. If a packet, P, has n fields, each of which has a value labeled V;, then the

following definitions can be stated:

3.2.1 Packet. A network packet, P, is defined by the values it contains. This is
given by the n-tuple:
P = (%7 V17 ‘/27 ceey Vn—l)

3.2.2 Field Value. Considering the IP version 4 and Ethernet fields of this
research, the values of any packet field (not considering the packet payload) can be any
number from zero to 24 [Stev99]. However, network packet values range from 0 to 1 for the
TCP flags, to 28 for the IP TTL, to 2%, for Media Access Control (MAC) address fields. If
v is defined as the number of bits necessary to define the packet field under considerations,

the numerical value of any field, V;, is represented by:

V; e {0,1,...,27}

For example, TCP flag values range from zero to one, so v would be zero. However,
in a MAC address, the values range from zero to 28, so v would be 48. Therefore, the size

of 7; determines the size of the value V;.

3.2.3 Gene. The relational gene primarily used in this research is defined by the
equal, less-than, or greater-than relationships drawn between similar fields of two packets.
Since the gene has three possible relationships, it takes two bits to represent this gene.
Thus, for this research, a binary 01 represents a less-than relationship, 10 represents a
greater-than relationship, and 11 represents an equal relationship. Using a relationship, R,
with n fields per packet, the relational genes are defined in the following manner. Given
that 0 <i<nand 1 <j <k, and Vij is the 7th element of packet P; and VZ’g is the ith

element of packet Py, then if
R(Vij, VF) is < then G;=01

R(V/,VF) is > then G;=10

R(VI,VF) is then G;=11

Example
Given:
Packet 1, P, = (1,0,0,345645,0)
Packet 2, P, = (0,0,1,345645,23423)
and

Gi=R(V;', V)

where R is a less-than, greater-than, or equal relationship mapping, this gives

Go =10 (1> 0)
G =11(0=0)
Gy =01(0<1)

G3 = 11 (345645 = 345645)

G4 = 01 (0 < 23423)

3-4

3.2.4 Chromosome. A relational chromosome, C, is defined by the m-tuple of

the genes it contains, where m is the number of fields compared. This is given by

C=(GYG?...a™)

If m were assigned a value of two, then each chromosome would be the concatenation
of two genes. If the genes on the bottom of page 3-4 are used to define the chromosomes,

the possible two-gene-chromosomes generated are
(Go; Gl)(Gm G2) (Gm G3) (Gm G4)

(G1,G2)(G1,G3) (G, Ga)
(G2,G3)(G2,Gy)
(Gi’n G4)

It can be easily seen how these cyber-chromosomes might be stored in a matrix data
structure, and indeed, this research does just that with m equal to two, three and four

fields, as is discussed in Section 3.6.

3.2.5 Antibody. Whereas relational chromosomes serve to define self, relational
antibodies serve to define non-self. Since there is a fixed number of packet fields, there is
also a fixed amount of relational chromosome and antibody space, with the antibody space
constituting the complement of the relational chromosome space. Hence, antibodies can
be generated deterministically to fill all space not occupied by chromosomes. Because the
chromosomes are stored in the matrix structure mentioned above, generating antibodies
is a simple matter of checking each cell of the matrix, and generating an antibody for
each missing chromosome in that cell. In this research, chromosomes are generated during
training, and the complement of this set, the conceptual antibody set, is used for intrusion

detection.

3.8 Crosschecking Genes

This research also delves into another form of relational gene construction, named
“crosschecking.” In this gene structure the subscript of the packet values compared do not
remain the same when performing the relational comparison. Instead, using a relationship,
R, with n fields per packet, the crosschecking relational genes are defined in the following
manner. Given that 0 <i<n,0< h<n,1<j <k, Vij is the ith element of packet P,

and th is the hth element of packet Py, then if
R(Vij, VF) is < then Gp =01

R(V/,VF) is > then Gy =10

R(V?, V)

[
0
]

then G(i,h) =11

Here the packet fields that are compared are not necessarily the same fields. This
is where the distinction mentioned earlier of similar packet fields is important. Since
comparing the TTL field to the SYN flag field will likely provide no useful information,
the acceptable values of (i,h) over G(;) are limited to similar fields. For example, IP
source and IP destination fields being similar would provide only IP source/IP source,
IP source/IP destination, IP destination/IP source, and IP destination/IP destination

relationships and ignore any other packet field comparisons.

This research explores crosschecking in an attempt to determine its potential use
and value in catching such attacks as the DSniff MitM attack addressed in Chapter V, and
the “Land” attack conducted in the 1999 DARPA intrusion detection evaluation. This is
because some attacks may not be detectable with the direct field-to-field gene used in the
majority of this research. In the “Land” attack, for example, the packet source address is
forged to be the same as the packet destination address in an attempt to conduct a denial
of service attack against the victim [LLab99]. Since the most obvious way of detecting this
attack would be to compare the source address to the destination address, crosschecking

is implemented to study its usefulness.

It should be noted, however, that since the gene structure changes in the crosscheck-
ing model, so too does the chromosome makeup, making it much more computationally

complex. This is discussed more in Section 5.5 on page 5-10.

3.4 Packet Values

A question that needs to be addressed is which packet fields are valuable in detecting
an intrusion when building a CIS sensor. The packet fields utilized by Williams seemed
promising [Will01]. Therefore, those fields are used here with only slight modifications to
improve the efficiency of relational comparisons, reduce redundancy, or include additional
fields. For instance, Williams split the source and destination IP address into its separate
quads, but an IP address is represented as merely a single field here, as comparing the
relationship of a single address seems more useful than comparing the relationships between
four separate fields that make up a single address. Additionally, the IP fragment fields
were split up into three separate fields, as the comparison of the unused IP flag field
(not specified in the protocol, but an attacker may intentionally or unintentionally set the
bit), the do not fragment field, and more fragment field should be examined separately.
The reason for examining these fields separately is that an attacker might set all of the IP
fragment fields at once, similar to a Christmas Tree attack, in order to take advantage of
how different operating systems may respond differently to this abnormal situation. This
sort of packet manipulation has been shown to be capable of conducting insertion and
evasion attacks [Ptac98]. Also, the MAC address fields were added to detect ARP and
IP spoofing attacks. Table 3.1 shows the fields utilized in this research, along with the

number of bits necessary to represent these fields.

3.5 Relational Space

FEach network packet has a given number of fields, and the relationship among these
fields is what makes up the genes in this research. However, as discussed above, it is
not practical to compare relationships between a given type of field of one packet, and a
dif ferent type of field of another. Hence, this research shall consider only relationships

between similar types of fields of network packets. The word “similar” takes on different

3-7

Table 3.1 Packet Fields Used in Gene Construction

Field Name Field Range
Fields Common to all packets

IP Identification Number

IPTimeTo Live

IP Don't Fragment

IP More Fragment

Unused IP Flag (Not Used in IP Spedficaion)

IP Fragment Off set

IP Header Length

IP Padket Length

IP Surce Address

Source MAC Address

IP Destination Address

Destination MAC Address

Total Packet Length (IP Padket Length + Ethernet
Header)

TCP-Only Fields

TCP Source Port

TCP Destination Port

TCP Squence Number

TCP Next Sequence Number

TCP CWR (Congestion Window Reduced Flag)
TCP ECHO (Echo Flag)

TCP URG (Urgent Flag)

TCP ACK (Acknowledge Flag)

TCP RJUSH (Push Flag)

TCP RST (Reset Flag)

TCP SYN (Synchronize Flag)

TCPFIN (Final Flag)

TCP Header Length

UDP-Only Fields

UDP Source Port 0-2%
UDP Destination Port 0-2%
UDP Data Length 0—2%
ICMP-Only Fields
ICMP Code 0-2
ICMP Type 0-2¢
ICMP Data Length 0-2*

(2]

[T O (O I
w

(2]

N

©

[
NN, N NN NG N, N, N, N,

[cNeoNeoloNoNoNoNeNeNe)
|

coco
I

NN,
~N 0N

o o
[

OOOOO|O|OOOOO ;
NN NN N NS N R NS N, N N R

meaning with the normal relational gene than with the crosschecking gene. In this research
only the same fields are compared when constructing relational genes, with the exception
of the method used in the crosschecking gene structure mentioned above. This means that
the space of possible crosschecking genes is much larger than the space of possible normal
genes, because the normal genes are actually a subset of the crosschecking genes. The
space of the normal gene is discussed below, as the normal relational gene comprises the

majority of this research, and as the space of the crosschecking genes depends largely upon

the implementation of which fields are deemed “similar” and compared when crosschecking.
It is demonstrated in Section 5.5, however, that the space of the crosschecking gene can

quickly become unwieldy.

Since the number of fields of each packet is fixed, the number of fields compared
in a normal relational gene does not increase the order of the problem with respect to
the number of packets that are compared by more than some constant, k. Therefore, in
discussing the order of complexity of the problem this constant is ignored for now to focus
on the more important variable, the number of packets. Even ignoring the number of fields,
the number of possible relationships between all packets can be calculated to be intractable.
For instance, if three packets (labeled 1, 2, and 3) are compared, the relationship patterns

that could be compared are:
No relationships: compare single packets: (1), (2), (3)

Two relationships: compare two packets at a time: (1,2), (1,3), (2,1), (2,3), (3,1),
(3.2)

Three relationships: (1,2,3), (1,3,2), (2,3,1), (2,1,3), (3,1,2), (3,2,1)

With some thought, it is clear that the total number of relationships possible is
the permutations of the number of total packets, n, and the number of packets being
considered, b. In the above three-packet scenario, this is the sum of 3P}, 3P, 3P or 3, 6,

and 6 relationships respectively, for a total of 15 possible relationship patterns. This sum

is given by the formula
n
> _nbh
b=1

where the relationships of n packets are permuted b at a time. This equals
- n!
Z (n—b)!

b=1

which equals

As the number of packets compared, b, grows large, the denominator of the summation
approaches 1, and since the summation is multiplied by n!, the order of comparisons of
relationships possible is O(n!). This is definitely intractable. This is the size of all possible

relationships between network packets.

3.6 Self/Non-Self Domains

While the number of possible relationships between network packets is intractable,
not all or even most of these relationships need to be considered in the search for an
attack. For instance, if there are a million packets per day flowing through the network, it
is unlikely that the relationships need to be examined for all million packets, as an attack

would likely be only a very small subset of these packets. This research considers only the

TL2—1’L

2

smaller case, that of only two-packet relationships. With n packets, relationships
can be considered (a packet need not be compared to itself, and packets are not compared
to previous packets). This is referred to as simply O(n?) relationships, as it is still of the
order n?. Examining even O(n?) packets is considered non-optimal, however, as in peak
traffic times the network may be saturated. This can make O(n?) too large to examine

“on the fly” and packets may have to be dropped. Therefore, a “sliding window” concept

was used to reduce this space.

Many attack packets are likely not separated by vast numbers of packets, and in
fact, are often likely nearby one another in MPAs. Therefore, as a starting point this
research searches for attacks by not examining all O(n?) two-packet relationships, but by
using a sliding window of packets, comparing only packets within the window. In limited
testing of window sizes from 3 to 30 packets, there was not a large difference noticed in
the relationships obtained in large amounts of training data. Therefore, a window size of
six packets was selected as the baseline of this research, and one packet is compared to
the next five packets throughout the training and testing processes. A six-packet window
was selected because this size allows for determining relationships between packets during
the sessions of the MitM attack discussed, while being a small enough window to provide
efficient implementation. Future research may delve into changing this window size to

detect specific attacks which fall outside this window, such as “low and slow” attacks.

3-10

The use of a sliding window reduces the number of packet relationships from O(n?) to

approximately 5n two-packet relationships, which still O(n), and is much more manageable.

Using the packet relationships constructed above, patterns of “self” and “non-self”
can be drawn. Assuming that an attack-free set of n packets is obtainable for training, self
can be defined as the O(n) relationships drawn from these packets. Once self is defined,
the compliment of this set would be non-attack-free network traffic, or “non-self.” Thus,
relationships drawn among this non-self that do not match the relationships among attack-
free traffic are considered abnormal. The data set that is used to define self is called training

data, whereas the data set that is examined for attacks is called testing data.

One problem is that since each packet contains a number of fields of varying sizes,
attack-free self cannot be completely defined. First, the data portion of the IP packet,
termed the “payload” consists of 25699530 possible values [Will01], a number that is clearly
intractable and cannot be defined deterministically. As the packet payload is not considered
in this research, this problem is ignored. However, even discarding the packet payload, the
other fields in the packet are still too numerous to define completely. Using the 32 fields

discussed in Section 3.4 the search space can be calculated as follows:

No packet contains all TCP, UDP, and ICMP fields simultaniously, so they need
not be considered together. Additionally, the TCP fields dominate the search space with
regard to the UDP and ICMP fields. This can be seen in Figure 3.1, where there are a
greater number, as well as larger TCP fields. Therefore only the common fields and the

TCP fields are considered in the space calculations.

Eleven of these fields have a range of 0 to 1, two have a range of 0 to 15, one has
a range of 0 to 255, one has a range of 0 to 8191, four have a range of 0 to 65535, one
has a range of 0 to 131071, four have a range of 0 to 4294967295, and two have a range
of 0 to 281474976710655. This yields a possible 21! * 162 * 256 * 8192 * 65536* * 131072
* 4294967296* * 2814749767106562 or 7.167 * 10'°3 possible strings. Even calculating a
string every nanosecond (of which no computer is currently capable), it would take 2.27 *
1087 years to cover all possible packet strings, and this is even before relationships between

fields are considered. This amount of time is clearly not practically efficient.

3-11

In addition to being unable to completely define self in the first place, self actually
changes as new hardware or user activity is encountered, and new protocols and applica-
tions are developed. Therefore, even if self could be defined, that definition would be only

a temporary definition.

Since self cannot be completely and permanently defined, all possible attacks cannot
be detected with any manner of intrusion detection. At best, it is hoped that enough
varying layers of detection are put in place so that one layer may catch an attack missed
by another. This is the purpose of this research, which is to detect MPAs that go undetected
by the current intrusion detection corpus, providing another layer which the attacker must

avoid.

3.7 CIS Usage

The current corpus of research in intrusion detection at AFIT focuses on the usage
of a CIS in defining self and non-self, as discussed in Chapter II. There have been two
CIS implementations used at AFIT in the ID arena. The first of these is Warthog, an
implementation conceived by Williams in an effort to detect “low and slow” network attacks
[Will01]. The second is Ferret, which is designed to be faster and more efficient than
Warthog, yet still perform the CIS functions shown in Figure 2.4 [Will0la]. This research
diverts from the Warthog and Ferret implementation to utilize packet relationships, vice
simple single packets. This requires a transformation away from the single-packet input
and detector parameters of Warthog and Ferret to multiple-packet relational detectors,

called relational antibodies.

The conceptual antibodies of this research could be used in a larger CIS structure
and have life cycles like depicted in Figure 2.4. Here, they are simply static, and do not
change once defined. One benefit of this research is that the chromosomes are neatly
stored in a logical matrix structure, which could similarly be done with antibodies. This
can make examining, understanding, and modifying these antibodies a somewhat easier
task. Additionally, storing the relational sensors in z-dimensional matrices adds an aspect
of determinism to the stochastic implementation currently underway at AFIT as another

layer of defense. This is beneficial for this small-scale implementation, because the number

3-12

of possible two-packet, limit-field relationships of this research is small enough to allow for
a deterministic search. This allows for a more complete coverage of possible antibodies.
When the dimensionality of the sensors gets too great, however, deterministically traversing
the search space in real-time may be impractical, as stated in Section 4.5. In higher-
dimensional sensors, if on-line processing is a necessity, the completeness of a deterministic

algorithm may have to be traded for a faster stochastic algorithm.

3.8 Attack Visualization

One problem with MPA ID is that vast amounts of data must be drudged through
in the search for attacks. This is often beyond the capability of the network analyst to
do with simple textual-based programs such as Ethereal and TCPDump, which display
network traffic a packet at a time. What is needed is a means of visualizing numerous

packets simultaneously, allowing for dynamic filtering of packets as appropriate.

Parallel coordinates are one means that allow for the simultaneous comparison of
multivariate data, and in fact, Inselberg states that “the special strength of parallel coor-
dinates is in modeling relations” [Inse97]. With parallel coordinates, multiple dimensions
are shown, with each dimension depicted on its own axis. As stated, a secondary goal
of this research is to develop a visual tool to aid the analyst in examining events that
are labeled “attacks” by the IDS to determine if it is a true attack, or a false positive.
Therefore, a parallel coordinates system with the same fields used in packet detection in
the IDS is developed to assist the network administrator in post-mortem analysis. This is

discussed more in Chapter IV.

3-13

IV. Low Level Design and Implementation

The implementation of this research progressed through several stages in its evolution. All
stages of this research focus on the relationships of multiple fields of two packets at a time.
While it is true that there are likely some attacks that must examine relationships between
more than two packets to be detected, this research is focused on the number of fields
and the method for comparing those fields, and leaves more-than-two-packet detection for
future work. As stated in Chapter III, the two-packet comparisons are inspected in a
sliding window of six packets in an effort to detect intrusion packets which lie close to one

another.

Even considering only relationships between two packets at a time, each packet has a
number of fields, and the method of comparison utilized between these fields evolved with
this research. As this evolution facilitates understanding of the final product and consti-
tutes a large portion of the research, the versions leading up to the final implementation
are also discussed. The low-level implementation details of these versions are discussed in

this chapter, and the testing conducted on each version is discussed in Chapter V.

Here is a brief overview of the versions that were implemented; the first version was
a simple beta version intended to detect the MitM attack discussed in Chapter 1. This
version, version 0.0, implemented strictly equal/not-equal relationship genes, and initially
detected the MitM attack it was developed to find. However, after extensive testing, it
was noticed that the order of the packets flowing through the network mattered, so the
equal /not-equal relationship gene was changed to the equal/greater-than/less-than gene

discussed on page 3-4. This became version 1.0.

Then, to make the IDS more rigorous and useful, the protocols and fields were ex-
panded to include all 32 fields of Table 4.2. This version, version 2.0, seemed to work very
well. In fact, it was so promising that this version became a mainstay component in this
research. Version 2.0 seemed to be fast and efficient, but it is likely that there are attacks
that require the examination of more than two fields of the two packets in order to be

detected. Therefore, this version was expanded beyond the two-gene chromosomes (simple

two-dimensional matrix) to include three- and four-gene chromosomes (three-dimensional

and four-dimensional matrices) with versions 3.0 and 4.0.

Finally, during testing concern arose that attacks such as the DSniff MitM attack
discussed in Chapter V might be missed by these versions as they simply compare the same
fields when creating a gene schemata. Therefore, the crosschecking gene was investigated
with versions 2.44 and 2.116 (named after the length of one side of the matrix). Table 4.1

summarizes the main differences between the versions.

Version Gene Schemata | Dimensionality | # of Fields Matrix
Schemata | Construction Breakout

Vv 0.0 z 0 Same Fields 2 11 Fig4.2
=1

V10 < 01 Same Fields 2 11 Appendix A
> 10
=1

V20 < 01 Same Fields 2 32 Appendix B
> 10
=1

V 3.0 < 01 Same Fields 3 32 Table4.2
> 10
=1

V 4.0 < 01 Same Fields 4 32 Table4.2
> 10
=1

V 2.44 < 01 Cross 2 44 Appendix C
> 10 Checked
=1 Fields

V 2116 < 01 Cross 2 116 Appendix D
> 10 Checked
=1 Fields

Table 4.1 Code Version Overview

4.1 Version 0.0, Equal/Not-Equal Gene

This research started out by attempting to detect the MitM attack discussed in
Chapter I. In order to detect this attack, the attack had to be reconstructed to obtain
data for testing. Figure 4.1 shows the MitM attack constructed in a telnet session to
emulate the attack mentioned in [Jonc95]. This data, extracted from a sniffed TCPDump
file, is limited to the fields that facilitate understanding of the attack in order to reduce
distractions. Since the MitM attack discussed in Figure 1.1 addressed only IP and TCP
fields, the initial implementation was limited to eleven IP and TCP fields (excluding the

packet number, which was used in selecting packets, but not in field to field comparisons).

4-2

IPSRC IPDST TCPSrcPort TCPDestPort TCPSeg# TCPNxtSeqg# Ack Push Reset Syn Fin
1 101.10.10.4 101.10.10.2 1761 23 2057753888 0 0 0 0 1 0
2 101.10.10.2 101.10.10.4 23 1761 212397464 0 1 0 0 1 0
3 101.10.10.4 101.10.10.2 1761 23 2057753889 0 1 0 0 0 O
4 101.10.10.4 101.10.10.2 1761 23 2057753889 2057753892 1 1 0 0 O
5 101.10.10.4 101.10.10.2 1761 23 2057753892 0 0 0 1 0 O
6 101.10.10.4 101.10.10.2 1761 23 601928704 0 0 0 0 1 0
7 101.10.10.2 101.10.10.4 23 1761 212403865 0 1 0 0 1 0
8 101.10.10.4 101.10.10.2 1761 23 2057753892 0 1 0 0 0 O
9 101.10.10.2 101.10.10.4 23 1761 212403865 0 1 0 0 1 0
10 101.10.10.4 101.10.10.2 1761 23 2057753892 0 1 0 0 0 0
11 101.10.10.2 101.10.10.4 23 1761 212403865 0 1 0 0 1 0
12 101.10.10.4 101.10.10.2 1761 23 2057753892 0 1 0 0 0 O
13 101.10.10.2 101.10.10.4 23 1761 212403865 0 1 0 0 1 0
14 101.10.10.4 101.10.10.2 1761 23 601928705 601928725 1 1 0 0 O
15 101.10.10.2 101.10.10.4 1761 23 601928725 0 1 0 0 0 1
16 101.10.10.4 101.10.10.2 23 1761 212403866 0 1 0 0 0 0
17 101.10.10.4 101.10.10.2 23 1761 212403866 0 1 0 0 0o 1
18 101.10.10.2 101.10.10.4 1761 23 601928726 0 1 0 0 0 O

Figure 4.1 Man in the Middle Attack

In Figure 4.1 packet number five is the attacker’s reset packet with the spoofed client
IP address, designed to desynchronize communications between the client (101.10.10.4)
and the server (101.10.10.2). This is the portion of the attack that was intended to be
caught with relational schemata. After the attacker sends the reset and initiates his own
spoofed telnet session, there is a short ACK storm between the true client and the server
in packets 7 through 13. This ACK storm is described in ??. Finally, the attacker sends
some malicious data and a termination command (in the data portion of the packet, which
is not used in this research) in packet 14, and the session is closed in packets 15 through

18.

Each packet in the data stream is compared, one packet at a time, to the five packets
which follow it. An efficient method of examining all O(n?) packet field relationships,
where n is the number of fields, is with the use of a matrix, as was suggested in Section
3.2.4. Here the fields of two packets are compared in a row/column manner that provides
two genes, which when concatenated together produced a relational chromosome. First
the field designated by the row is compared between the two packets, with an equal/not-
equal relationship making up a one or zero relational gene, respectively. Then the field
designated by the column is compared, making a second relational gene. These two genes

concatenated together produce one relational chromosome for that row and column cell of

4-3

the matrix. Then the field corresponding to the next column is examined, looping through
all O(n?) row and column fields. Using a six-packet sliding window, and the data in Figure

4.1, this produced the relationship matrix shown in Figure 4.2.

1PSrc(0) [IPDst(1) [TCPSrcPort(2) [TCPDstPort(3)] TCPSeq#(4) [TCPNextSeq#(5) | ACK(6) [PUSH(7)[RST(8) | SYN(9) [FIN(10)
IPSrc (0) 1] ([3,0] [3,0,2,1] [3,0,2,1] [3,0,2] [3,1,0,2] [3,1,0,2] | [3,1,0,2] | [3,1,0,2] | [3,0,1,2] | [3,1,2,0]
IPDst (1) 1l ~{— [3,0,2,1] [3,0,2,1] [3,0,2] [3,1,0,2] [3,1,0,2]] [3,1,0,2] | [3,1,0,2] | [3,0,1,2] | [3,1,2,0]
TCPSrcPort (2) Il I} I} [3,0] [3,0,2] [3,1,0,2] [3,1,0,2]| [3,1,0,2] | [3,1,0,2]] [3,0,1,2] | [3,1,0,2]
TCPDstPort (3) Il I} Il Il [3,0,2] [3,1,0,2] [3,1,0,2]] [3,1,0,2] | [3,1,0,2] | [3,0,1,2] | [3,1,0,2]
TCPSeg# (4) i i i i i [3,1,0,2] 138,.1,4,2)] [3,1,0,21 | [3,1,42)] [3,0,1] | [3.1,0,2]
TCPNextSeq# (5) I} I} I} Il Il Il [3,1,2,0]| [3,0,1] |[3,1,2,0]] [3,2,0,1]] [3,1,2,0]
ACK (6) I} I} I} I} I 1] 1] [3,2,1,0] | [3,0,1,2] | [3,2,0,1] | [3,1,2,0]
PUSH @) 0 I I 0 0 I 0 0 [3,1,2,0]](3,2,01]] [3,1,2,0]
RST ®) 0 0 i} 0 I i} i 0 I [3.2,0,1]] [3.1,2,0]
SYN ©) i} 0 0 I} I i} i 0 I il [3.1,0.2]
FIN (10) i 0 i} i I il il i} I il 0
0 = 00 (not equal/not equal) (4,6) 2 equates to TCPSeq# equal, ACK not equal
1 =01 (not equal/equal) (4,8) 2 equates to TCPSeq# equal, RST not equal

2 =10 (equal/not equal)
3 =11 (equallequal)

Figure 4.2 Man in the Middle Attack Equal/Not-Equal Relational Matrix

In this matrix the relational chromosomes of each cell are determined by the rela-
tionships between the packets that were examined. For example, in cell (0,1) the relational
chromosomes [3,0] are shown. Since cell (0,1) represents the IP source and IP destina-
tion cell, this cell gives all encountered relationships between the IP source fields of any
two packets concatenated with the relationships between the IP destination fields of those
packets (within the six-packet sliding window). Because there were only two IP addresses
in the data used, and since they only communicated with one another, either the relation-
ships were both equal (3), or they were both not-equal (0). For instance, in Figure 4.1, The
IP source of packet number one and the IP source of packet number two are not-equal (a
0 gene), and IP destinations are similarly not equal (another 0 gene). However, if packet
number one is compared to packet number three, both the IP source and IP destinations

are equal (a 11 chromosome, which is binary for a decimal 3).

This method of intrusion detection worked at the outset in identifying this attack, as
the relationships of cells (4,6) and (4,8) in Figure 4.2, might be detectors, as discussed on
page 1-8. To test the effectiveness of this version, the sensors were trained against 200,000
packets of MIT Lincoln Laboratories data used in the 1999 Intrusion Detection Evaluation

[LLab99]. This data was utilized in training because it is known to be attack free, and

4-4

because it was created to model the traffic that might be seen in a typical Air Force
network. When the sensors were trained on the first 200,000 packets of TCP data, the
relational antibodies performed well. In fact, the IDS detected the attack in only two cells—
cells (4,6), and (4,8) of Figure 4.2, where the circled twos indicate relationships which were
not detected during training with the Lincoln Lab’s data. The two in cell (4,6) represents
two packets having equal TCP sequence numbers, but unequal ACK fields. The two in
cell (4,8) represents two packets having equal TCP sequence numbers, but unequal RST
fields. This is noteworthy, because these cells match two of the three abnormal relational
patterns shown on page 1-8. This is also noteworthy because it did not detect the attack
in any other cells—alleviating the concern of false positive detectors in those cells. Thus,

the relational IDS seemed to work initially.

However, when a very large amount of data was utilized in training, it was noticed
that packet P3 and packet Ps, of Figure 1.2 may actually happen in reverse order. Namely,
a user may send packet Ps,, then reset the connection—a legitimate activity. When this
sequence of packets was detected during training, the equal/not-equal CIS gene did not
detect the MitM attack, as it was encountered in training and eliminated as a relational
antibody. Therefore, since packet order matters, the not-equal relationship was split up
into greater-than and less-than relationships. The relational gene discussed in Section
3.2.3, with the 01, 10, and 11 schemata was used to represent less-than, greater-than, and

equal relationships. This was incorporated into version 1.0.

4.2 Version 1.0, Less-Than, Greater-Than, Equal Gene

When two equal/not-equal (one/zero) genes were concatenated together there were
only four possible chromosome values—00, 01, 10, and 11. However, in this version, using
the gene schemata discussed in Section 3.2.3, each gene takes on three possible values—01,
10 and 11. Therefore, there are nine possible chromosome values in each cell using this
gene structure: the two-gene combinations of the three values being 0101, 0110, 0111, 1001,
1010, 1011, 1101, 1110, 1111. This equates to the decimal numbers 5, 6, 7, 9, 10, 11, 13,

14, and 15, seen in Figure 4.3 and the appendices.

Using the decimal representation of the above chromosome values, a matrix such as
the sample in Figure 4.3 is constructed from the data in Figure 4.1. Again, a field is never
compared to itself in both the row and column (as it provides no additional data to be

compared in both the row and the column). This produces a matrix similar to the one

m2—m

shown below, with only the upper right cells of the matrix having values.

IPSrc (0) IPDst (1) TCPSrcPort (2) TCPDstPort (3)

IPSrc (0) 6, 15,9 5,15, 10, 11, 13,7, 14,6, 9 6,15,9,11, 14,7, 13,5, 10

IPDst (1) 9,15, 6,7,13,11, 14, 10,5 10,15,5,7,14,11,13,9,6

TCPSrcPort (2) 6, 15,9

TCPDstPort (3)

TCPSeq# (4)

TCPNextSeqg# (5)

ACK (6)

PUSH (7)

RST (8)

SYN (9)

FIN (10)

Figure 4.3 Partial Less Than, Greater-Than, and Equal Relational Matrix
*Full Matrix is found in Appendix A

The entire matrix produced by the data in Figure 4.1, as well as the matrix derived
from the training data are shown in Appendix A. Here, even when the IDS was trained
on the same data that caused the attack to be missed in version 0.0, it caught the MitM
attack in the suspect cells (4,6) and (4,8). This is because this version, unlike version 0.0,

took into account packet order.

This system seemed to work well for one specific attack, but more fields needed to be
added to the matrix if the IDS was to be of any practical use to catch a number of diverse
attacks. To address this concern, more fields and more protocols were added to the IDS

Sensor.

4.8 Version 2.0, Multiple Protocols, Additional Fields

The fields of version 1.0 needed to be expanded beyond the simple eleven Transmis-
sion Control Protocol (TCP) fields addressed in the first two code versions in order to
detect attacks involving other protocols and other fields. The three protocols and 28 fields

used by Williams seemed to be an appropriate starting place, and these fields were used

with only slight modifications, as discussed on page 3-7. Thus, version 1.0 was expanded

to include the fields of Table 3.1.

With these protocol and field modifications to the code, the number of fields of any
packet may differ, as a TCP packet has more fields than a UDP or ICMP packet. Since
it is likely of little use to compare TCP fields to UDP fields, the packets were compared
according to protocol categories. When two packets were selected to be compared from the
six-packet sliding window, the first thing checked was each packet’s protocol. If the two
packets were of the same protocol type, then all fields were compared when obtaining gene
schemata. When the protocols of the two packets were different protocols, only common
fields were compared, and the remaining protocol-dependent fields were skipped. The IP
and Ethernet fields of all packets could be compared because TCP, UDP, and ICMP all

use these fields.

Because protocol-dependent fields were not compared across protocols, the matrix of

this IDS does not fill ng ™ cells, but has blank areas. Additionally, this matrix, consisting
of approximately 322 fields is somewhat larger than the previous matrices. Because of this
increase in size, this matrix will not be shown here, but an example is shown in Appendix B.
What is shown here instead, and presented as a reference for code versions 3.0 and 4.0, are
the numerical breakouts of each field as they are represented in the IDS implementation.

Via Table 4.2, if a cell is referenced, the meaning of that cell can be decoded.

The matrix that displays the concatenation of two relational gene schemata is a two-
dimensional matrix. Therefore, this code version is referred to as a 2-D sensor throughout
the rest of this document. Similarly, 3-D and 4-D matrices are built by examining all

three-gene and four-gene combinations of these fields.

Version 2.0 worked well in detecting some attacks, and it was fast enough to easily
use in a real time IDS “on the wire.” In fact, 200,000 packets, which compromised approx-
imately four hours of traffic of the Lincoln Laboratory data, could be run through the IDS

in about 35 minutes. How well this 2-D sensor performed is covered more in Chapter V.

Table 4.2 Matrix Fields Used in Code Versions 2.0, 3.0, and 4.0

IPID

IPTTL

Don't Fragment
More Fragment
Unused Flag
Fragment Off set

IP Header Length

IP Padket Length

IP Surce
SourceMAC

10 | IP Destination

11 | Destination MAC

12 | Total Padet Length
13 | TCP Surce Port

14 | TCP Destination Port
15| TCP Sguence Number
16 | TCP Next Sequence Number
17| CWR

18 | ECHO

19 | URG

20 | ACK

21| PUSH

22 | RST

23| SYN

24 | FIN

25 | TCP Healer Length
26 | UDP Surce Port

27 | UDP Destination Port
28 | UDP Length

29 | ICMP Code

30 | ICMP Type

31| ICMP Length

O N[O U|A~lWINFO

Because examining the relationships of only two fields at a time may fail to detect
some intrusions, the 2-D chromosome was expanded to make another chromosome, the 3-D

chromosome.

4.4 Version 3.0, Three-Dimensional Chromosome Structure

The 3-D chromosome is constructed in the same way as the 2-D chromosome, with
the exception that each 2-D chromosome is concatenated to another gene. Thus, the
nine 2-D chromosomes mentioned earlier (0101, 0110, 0111, 1001, 1010, 1011, 1101, 1110,

and 1111) can each be preceded by a 01 (less-than gene schemata), 10 (greater-than gene

schemata), or 11 (equal gene schemata). This means that the possible chromosome values

for any cell increase from 9 values to 27 values.

Additionally, when the relational matrix is changed from a square to a cube the
number of cells also increases. Whereas a 2-D matrix with 32 fields spanned three or
four pages, the 3-D matrix is 32 times as large to print. This is the reason that 3-D
and 4-D matrices are never printed in this document. Increasing the possible number of
chromosomes per cell, as well as increasing the number of cells, significantly decreased the

rate at which the IDS can function.

Considering the worst case of TCP as was done earlier, the following calculations

can be made. With 26 fields compared in a square matrix using m fields, like the one

in Appendix B, this gives m2§ ™ or 325 cells in version 2.0. Each cell may have any of

9 chromosomes, for a maximum possible 2,925 comparisons for any two packets chosen.
The higher the dimensionality, the more cells there are in the entire matrix, and the more
chromosomes there are in each cell. If m is the number of fields, the number of cells in a

d-dimensional matrix is given by the formula

In this case, where chromosomes that are the concatenation of three genes, the number of
possible chromosomes per cell is 3¢. With a 3-D matrix vice a 2-D matrix, there are 2,600
cells checked for every two packets. Additionally, each cell has a possible 27 chromosome
values. This yields a maximum possible 70,200 comparisons for any two packets. This
means that it may be twenty-four times more costly to compare two packets with the 3-D

sensor than with the 2-D sensor.

The increase in cost may be worth it, however, as the three-gene chromosome provides
a greater resolution in intrusion detection than the two-gene chromosome. This is because
during training the antibody that represents an attack may not be eliminated completely
from the 3-D antibody matrix, where it might be from the 2-D version. This means that

the 3-D sensor, while being more costly, may detect attacks that go unnoticed by the 2-D

sensor since negative selection is much more indiscriminant in the 2-D sensor. This indeed

turned out to be the case, as is discussed in Chapter V.

4.5 Version 4.0, Four-Dimensional Chromosome Structure

The 4-D sensor is even more costly than the 3-D sensor. With the 4-D relational
matrix, there are 14,950 cells compared for every two packets. Each cell has a possible 81
values, giving a maximum of 1,210,950 comparisons for any two packets selected! Because
of this, the 4-D sensor is probably not useful in a “real time” IDS, as is shown in Figure 5.3.
Rather, this sensor could be used in an off-line scan of stored data, searching for attacks

that went undetected by the other versions.

With this in mind, the three versions are tested in a comparison fashion in Chapter
V. Each of these sensors is examined in this research because they each have their own
advantages in speed or resolution. They could be implemented in one IDS, with a “switch”
that allows it to search for an intrusion in normal, medium, and high resolution. This might
be implemented according to the Information Conditions (InfoCons) put in place at many
Air Force institutions. Here, when a higher InfoCon is issued due to suspected malicious
activity, the IDS could be switched from a 2-D to a 3-D or 4-D sensor, for a slower, but

more thorough search for intrusions.

The Land attack discussed in Section 3.3 may go unnoticed by a direct field-to-
field comparison, however, and comparing fields in a crosschecking manner may serve to
provide additional insight into network activity to detect this attack. To test the intrusion
detection ability of the crosschecking construct, the 2-D crosschecking gene was researched

in versions 2.44 and 2.116.

4.6 Version 2.44, Beta Crosschecking Gene

The crosschecking gene was conceptualized to detect attacks that might be missed
when comparing only the same fields when constructing chromosomes. The high-level
language used in defining this gene is discussed in Chapter III on page 3-6. However, the

low-level details, such as which fields are compared to which fields, also must be addressed.

4-10

In order to detect an attack such as the Land attack or other such attacks involving
the IP source and destination address, only these two fields might need to be crosschecked
against one another. But then that begs the question—if the crosschecking method works
with the IP source and destination address fields, is it needed in other fields to detect

similar attacks?

During testing, an attack was conducted which resembled the Land attack in that
it involved the source and destination IP addresses. However, this attack, utilizing the
hacker program DSniff, required a little more sophistication for detection than merely
checking the two addresses of one packet. This attack also involved ARP Spoofing, which
can be a major problem, as discussed in Section 2.6. The specifics of this attack, and
how well the crosschecking gene performed in detecting it are addressed in Chapter V,
but addressing the attack here provides a sound reason for using more than the IP source
and destination addresses in the crosschecking mechanism, as detecting this attack also

involved crosschecking in the MAC address fields.

Since the DSniff attack utilized TCP and ICMP fields, the beta version of the cross-
checking gene was first implemented with the TCP fields of version 1.0, along with the
ICMP fields of version 2.0. Here, the fields were split into categories of similar fields, and
only those fields that were similar were compared. For example, the source MAC address
and the destination MAC address were compared, but these two fields were not compared
to any other field, as any MAC address would be larger than, say, a TCP Flag. The fields

that were grouped into like categories are shown in Table 4.3.

Checking all possible combinations of the fields of each category produced c¢? possible
combinations of the fields of any category, where c¢ is the number of fields in that category.
Therefore, the 16 fields above produced a 44 by 44 element matrix, the first page of which
is shown in Appendix C. The remaining seven pages of this matrix were left out to conserve
space, but the first page is shown to convey the concept of how the fields were crosschecked.

Only the first three columns of Appendix C are really needed to understand cell breakouts.

This crosschecking gene proved promising, so it was expanded upon to include all

32 fields used in versions 2.0, 3.0, and 4.0 in an effort to make comparisons between these

4-11

Table 4.3 Beta Crosschecking Field Catagories

Crosschecking Field Name Catagory
IP Source Category 1
IP Destination

MAC Source Category 2
MAC Destination

TCP Source Port Category 3
TCP Destination Port

TCP Sequence Number Category 4
TCP Next Sequence Number

ACK Category 5
PUSH

RST

SYN

FIN

Non-Crosschecking Field Name Catagory
ICMP Code Category 6
ICMP Type Category 7
ICMP Data Length Category 8

versions and their crosschecking gene counterpart. This code is described in version 2.116

below.

4.7 Version 2.116, Full Crosschecking Gene

The initial crosschecking code included only 16 fields, and to compare the crosscheck-
ing gene’s function to the gene used in versions 2.0, 3.0, and 4.0, those same fields were
added. Those fields that seemed to be comparable were grouped into like categories for
thoroughness. Those fields that did not seem to have any relationship to another field
were grouped in their own categories. The 32 fields used previously were grouped into the

categories shown in Table 4.4.

As stated previously, a category with ¢ fields produces ¢? values which can be com-
pared. From Category 1 to Category 15, this is 12 +12 +42 +32 +22 422 422 122 1 82 +
12 4+ 22 +12 + 12 4+ 12 4 12 which equals 116 fields. This produces a 116 by 116 matrix,
the first two pages of which are shown in Appendix D. This matrix proved very costly
computationally, as in a 116 by 116 matrix, where each cell may take on one of 9 values,

there are a maximum of 52,002 comparisons for every two packets checked (again, taking

4-12

Table 4.4 Full Crosschecking Field Categories

Field Name Category
IPID Category 1
IPTTL Category 2
Don't Fragment Category 3
More Fragment

Unused IPFragment Flag

Fragment Offset

IP Header Length Category 4
IP Packet Length

Total Packet Length

IP Source Category 5
IP Destination

Source MAC Category 6
Destination MAC

TCP Source Port Category 7
TCP Destination Port

TCP Sequence Number Category 8
TCP Next Sequence Number

CWR Category 9
ECHO

URG

ACK

PUSH

RST

SYN

FIN

TCP Header Length Category 10
UDP Source Port Category 11
UDP Destination Port

UDP Length Category 12
ICMP Code Category 13
ICMP Type Category 14
ICMP Length Category 15

TCP as the worst case). The computational cost of this version is comparable to the 3-D
sensor with version 3.0, and this is only a 2-D crosschecking gene! The 3-D version of this
crosschecking matrix would quickly require more time than was available for testing in this
research, and the benefits of this method were unclear. Therefore, no additional testing
was conducted on this version of code with the exception of speed testing, which was done

to determine how computationally expensive this code is compared to the other versions

with 32 fields.

4.8 GOPHER

The previous sections discussed the code versions implemented in this research. How
these versions actually performed in testing is covered in more detail in Chapter V. What

remains to be covered is the implementation of a visualization tool that might be used to

4-13

sort through suspected attack packets after the IDS issues an alert. The problem is how
to visualize the field values of multiple packets at once. This is where parallel coordinates

are useful.

Parallel coordinates allow for the transformation of multidimensional data, which is
difficult to understand, into two-dimensional data, which is much easier to understand.
This is necessary to compare large numbers of packets, each of which has multidimensional
data (fields) associated with it. With parallel coordinates, multiple fields of multiple
packets can be simultaneously analyzed so that comparisons can be made, and patterns
can be found. In fact, parallel coordinates are one of the very best ways of modeling
relationships between large dimensional data [Inse97]. This was the inspiration behind

GOPHER.

In order to visualize network packets, a graphical representation of these packets
needed to be developed. Also, in order to visualize patterns of nefarious network activity
among these packets, a multidimensional to few-dimensional concept, such as parallel co-
ordinates, needed to be developed. Therefore, the Graphically Oriented Pattern Honing
and Evaluation Repository (GOPHER) was implemented. GOPHER allows for the inspec-
tion, filtering, and comparison of multiple network packets, with the goal of understanding

network activity.

Since this research focused on TCP, UDP, and ICMP packets, GOPHER was designed
to display all three of these protocols either simultaneously, or separately, allowing the user
to filter out packets by means of Java sliders. The main display of GOPHER is shown in
Figure 4.4.

Each field of a packet makes up one value on the x-axis of the display. The y-axis,
however, had to have some sort of coordinate system to depict the values of the packet
fields. Since the values of the specific fields under consideration differ quite significantly,
depicting each field under the same coordinate system would be impossible. For instance,
the IP Fragment field can only be a zero or a one, while the Client Sequence Number
232,

field can range from zero to one less than This is quite a discrepancy, and if the

y-axis, depicting field value, ranged from zero to 23? to accommodate the Client Sequence

4-14

E’%E[IPHER -- Graphically Driented Pattern Honing and E valuation Repository

TCP Packets UDP Packets ICMP Packets
TTT TTT TTTTTTTTIT T[T I T ITTIT I TTTTTT

(I FEEEEEEETrrrrd
FETETRETL [N
(B A R (NSRS NERARENE NN | ANERRE
L e 1 R O A R A R
L 1 W B A O A
L4 O B A
L1 ¢ 1 O O A Ay
L 1 1 R I (RSN \IIHI\
(] HlHll\l\llHl
(R T I EREEREREEE AN
(R ! AR (] Frrrrrrrt
(B ER1TIE
A I TR

|

|

FEETEEEEETrrrd
1 1 Y A O
1 Y A O
{10 1 A O A
J‘_ FETEEEEEEEEE

FEETT (B e N S O
Tl FETEEELE R
FETEEEEEErErtd
FEEEEEEETTErd
FETEEELE LT
IR rrrnd
ot
LIt
I
[LErrrrrrnl

i

|
1] [T [T
bEbBERELEDLE DB Sl

[_] Less Fine Grain

Field Breakouts

Exit

o
o,

CEEBEEEEREELEEEEEREEE S S 5 EE -
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E [
0 0 0

Figure 4.4 GOPHER Main Screen

Number, it would be impossible to visually inspect whether the IP Fragment field was
either a zero or a one. Therefore, each field was depicted in a normalized fashion in its
own y-axis, as is typical in a parallel coordinates system. This allows for the IP Fragment
field to be visually inspected adjacent to the Client Sequence Number field, even though

both are of vastly diverse scales.

With the exception of the MAC address, GOPHER examines all fields used in Table
4.2. However, a few of the fields were modified as necessary. For instance, the IP ad-
dress fields were split into their separate octets to match the work conducted by Williams
[Will01]. Also, to speed calculations, the TCP sequence numbers were reduced by 23! + 1.
Figure 4.5 displays the output of the “Field Breakouts” button on the GUI interface. From
this figure it can be noticed that each field may represent a different value, depending on

the screen viewed.

One of the most powerful aspects of GOPHER is that it allows for a drill down

look of specific protocols. This also allows for a more spatially consistent understanding

4-15

Figure 4.5 GOPHER Field Breakouts

of the tool, because in the drill down screen each slider is placed immediately under the
field it is meant to filter. This could not be done in the initial window because all three
protocols were depicted. Hence, in the initial window there tended to be some confusion as
to which field a slider is filtering. However, in the drill down window, since the sliders are
immediately under their respective field, understanding which field a slider is associated

with becomes intuitive.

The GOPHER drill down window also allows for highlighting a specific packet amongst
the plethora of packets. This is accomplished via a scrollable list in the lower right hand

corner of the display. In this way, if a packet needs to be distinguished from other packets,

4-16

it is simply selected, and that packet is depicted in red (whereas all the other packets are
displayed in black). The drill down display of the TCP protocol is shown in Figure 4.6.

gﬁ Transmission Control Protocol [TCP) Analysis

376 i 5520
(15 841
e 12
] 03
i 04
0 05
20 206
80 887
196 1878
kil 1828
75 o110
158 23311
172 17212
16 1613
112 11414
194 169 15
66 | 7416
&0 as 17
25 2518
lngd 102819
1302126813 1409602120 20
1302126839 1409602154§;
0

0
0 023
0 g 24
i 125
L 26
%‘ éZT
0 028
0 929

[Packet 7 = | Packet 72

4

001 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 24 27 28 20 [vl Normalize to Packet Ranges
T BB BB nn non non nnnonon BB B [] Less Fine Grain
Field Breakouts
Return to Overview
il Packet_1 (i
A o4 i 1| [[r 1 1) | Al Il Packet_2 i
E: B CTEBEEECEREED - B EEE - B B -
K X X X X X XK X X X X K X 137512040 60 X X K X X X X X XK X X X

Figure 4.6 GOPHER Drill Down Screen

Along with viewing the packet values as a they relate to one another in the parallel
coordinates pane, the analyst may wish to view individual packet values separately. To
accomplish this another panel was added. This panel, shown in the upper right-hand
portion of Figure 4.6, allows for the values of individual packets to be shown. From a
drop-down menu, packets may be selected, and the fields of these packets will be displayed
both graphically and numerically. Often, a single packet may need to be compared to
another packet, to examine anomalies between the two. Therefore, two packet windows
are depicted next to one another so that relationship patterns (such as equal, less-than, or

greater-than) can be examined.

With the overview capability, the drill-down capability, the individual packet inspec-
tion and highlighting capability, and the two-packet comparison capability, GOPHER is

armed and ready to be tested against actual network attacks, as is done in Chapter V.

4-17

V. FEzxperimentation and Analysis

The testing of this research effort was conducted in phases, beginning with small-scale tests
and progressing to larger-scale tests as the coding progressed. As versions 2.0, 3.0, and 4.0
are the primary focus of this research, the majority of the testing was conducted on these
versions of code. However, each of the other versions are important in its own way for
conveying an awareness of the overall topic and providing a foundation for understanding
how the larger scale tests worked without the additional details. Therefore some of the
small-scale tests that were conducted on the earlier versions of code are discussed first,

leading up to the main testing section.

5.1 Testing Methodology

As stated in Section 1.6, the IDS must first be trained on normal data in order
to develop a representation of “self.” In order to make the tests reproducible, publicly
available attack-free data was utilized in the training process. Therefore, the first week
of the 1999 Lincoln Laboratory’s Intrusion Detection Evaluation data is used throughout
much of the training of this research, as this data is constructed to emulate real-world
network traffic, is known to be attack-free, and is public domain. Similarly, many of the
attacks with which this research was tested were Lincoln Lab’s attacks, for much the same
reasons. While it is true that this data has some limitations [McHu00], it is still some of

the best available attack-free or attack-ridden network data.

The Lincoln Labs data is stored in a TCPDump file format, which is the most
common format for storing network packet information. The TCPDump files were first
converted to human readable form with the program Ethereal to obtain the necessary
packet information. Then the field values were extracted and stored in a comma separated

value (*.csv) file.

To train the IDS on normal data, data was read in from a *.csv file, and a matrix of
relational chromosomes was constructed and stored in a relational matrix object (*.rmo)
file. The *.rmo file stored only the relational matrix, similar to the ones shown in the

appendices. The matrix representation of self was stored so that it could be used repeatedly

in multiple tests without having to train the system every time it was tested. This is much
like what would be done in an enterprise-level IDS, as the system could be initialized, read

in the *.rmo “self” file, and begin scanning network activity.

There was also an additional training module that could read in a *.rmo file and
add to it the relationships found in a user-specified *.csv file. This was used to train the

sensors on large amounts of training data that spanned multiple files.

Once the IDS is trained on self, it can read in *.csv files (with or without attacks)
and check the relationships between the packets of these files to the relationships of the
*rmo (self) file. In scanning for attacks among the testing data, there are three ways in
which the IDS can scan these packets and report alerts to the user. Each of these methods

is discussed briefly below.

One way of looking for anomalous relationships among the testing data is to examine
every two packets in real time and look for a relationship that do not match any chromo-
somes in the training (self) matrix structure (or match antibodies in a non-self matrix
structure). With this process, as soon as an anomalous relationship is detected, an alert
could be generated specifying the two packets, the fields, and the relationships that gen-
erated the alert. This may prove useful in assisting the network analyst to more readily
identify those alerts that are true positives, and those that are false positives. A drawback
to this approach, however, is that the same antibody and/or same matrix cell may be
repeatedly seen in multiple packets. If every one of these instances generates an alert, the
IDS may quickly overwhelm the analyst with alerts generated on the same type of data,
just spread across different packets. For example, in the IP spoofing attack discussed ear-
lier, packets with different IP and MAC addresses may generate an alert. If many packets
are sent in a single telnet session, and each time two packets are encountered with this
relationship an alert is generated, one telnet session from one IP address may generate

literally hundreds or thousands of alerts.

A second method of scanning packets and generating alerts is to scan the testing
data and build a “test data” relational matrix with the relationships encountered by x

number of packets. This matrix could be built in the same way that the training data

(self) matrix is built. After this test matrix is constructed, the chromosomes in each cell
of the test data matrix may be compared to the antibodies of the training data matrix,
and alerts could be generated. In this way, alerts are generated as collections of x packets,
not as alerts between any two packets within those = packets. In the above IP spoofing
example, this may provide the same information per cell, at the cost of specifying which
packets generated which alerts. This is the testing methodology of this research, as the IDS
reads in the entire testing *.csv file, generates a testing matrix (which is later discarded),
and compares the chromosomes of this matrix to the antibodies of the training matrix.
Alerts are then generated by cell, which specifies the fields of the packets that generated
the attacks. Which packets, as well as which chromosomes generated the alerts might
have been stored, but this required bookkeeping mechanisms that were not implemented
in the IDS. When this information is presented to the reader, it is merely to provide

understanding of how the IDS detected the attack.

In the case where only two packets are examined in testing, both of the above methods
generate the same alert. In fact, both methods will detect exactly the same types of attacks,
because they construct the same relationships from the training data, and compare them
to the same relationships of the testing data. What differs is the method with which they
report alerts to the user. The first way is by packet and the second way is by cell. A third
way of scanning packets and generating alerts is with the use of some portions of both of
the above methods. This may provide some details of alerts from the perspective of the
packets, and some from the perspective of the matrix, and is likely the most useful form of
alert reporting. For instance, an IDS may scan packets for anomalous relationships, and
after encountering anomalies, may store the packets that generated these relationships in
a database. After a small period of time the IDS may present the anomalous cells to the
analyst with a link to the packets that caused them. Conversely, an IDS may report a list
of anomalous packets, and link the analyst to the cells which caused them. In either way,
the IDS may need to collect like alerts, and present them to the user in one neat packaged

alert, instead of as a series of individual alerts.

As stated above, this research used the second method of intrusion detection and

alert generation, where x represented the number of packets in the entire attack *.csv file.

Thus, alerts reported the relational matrix cells with abnormal relationships among all

packets of the test file. Using this methodology, the following versions were tested.

5.2 Version 0.0 Testing

Version 0.0 was tested to determine if its equal/not-equal gene structure could detect
the Joncheray MitM attack discussed earlier. When the IDS was trained on the first 200,000
packets of Monday, week one of the Lincoln Lab’s data, it detected the attack in cells (4,6)
and (4,8) as mentioned in Section 4.1. This proved promising, and more extensive training
of the system was conducted to determine if these fields would be eliminated in the negative
selection process of training. During more training the system still caught the attack, even
when trained on all 807,201 packets of Monday data. When Tuesday’s data was added to

the training, however, the attack was no longer detected.

With closer inspection it was noticed that the relationships of packets Ps and P, of
Figure 1.2 occurred in reverse order in the Tuesday training; namely, a normal packet was
sent, and then a reset followed it. This is in contrast to the MitM attack shown, where
the attacker sent a spoofed reset, and then the client sent its own data. Therefore, since
packet order matters, no further testing was done on this version, and coding of version 1.0
began. It should be noted, however, that even though this version was scrapped to pursue
code that could detect more attacks, the equal/not-equal relationships of this version still
might be useful in intrusion detection. For example, this version may detect the ARP
spoof and IP spoof attacks mentioned later, as these attacks can be detected with simple
equal/not-equal relationships and packet order does not matter in the detection process.
Additionally, since this version does not have the additional overhead of the greater-than

and less-than relationships, it is faster than the following versions.

Despite the potential usefulness of this code and the fact that it is faster than the
following versions, this research sought to develop a mechanism to detect unknown at-
tacks. Therefore completeness was put before speed and this version, along with its strictly

equal/not-equal gene, was deprecated.

5.8 Version 1.0 Testing

When the relational gene schema was changed from a 0/1 mapping to a 01, 10, or 11
mapping, this new mapping detected the Joncheray MitM attack where the 0/1 mapping
did not. This is because since version 1.0 takes into account packet order, the antibodies
for detection were not eliminated during the negative selection process of training. When
trained on the same 100,000 packets of Tuesday week one of the Lincoln Lab’s data, it
detected the attack in only the cells (4,6) and (4,8). As stated in Section 4.1, since the
attack was only detected in expected cells, much of the concern for false positives was

alleviated in this instance.

To test this version a little more extensively, a spoofed IP address attack was con-
structed. Here, in another MitM scenario, the attacker was hypothetically sniffing the line
between the client and server. Then, after seeing the client conduct a telnet session with
the server, the attacker performs a like telnet session using the client’s spoofed IP address.
Not sniffed was a DoS attack perpetrated on the client (committed to prohibit the true
client from responding to the server), which could easily be done, by say, cutting a wire or
turning the true client’s machine off. Basically, from the server’s perspective, and from the
perspective of the IDS, which resides on the same subnet, there were two telnet sessions
with the same IP address, but coming from different MAC addresses. The attacker can
spoof his TP address, but since packets are routed at the Network Interface Card (NIC)
level in the Internet Protocol, the attacker cannot spoof his MAC address, lest he lose all

communications.

Since this attack involved the MAC address, the source MAC address and the desti-
nation MAC address had to be added to the matrix to detect this attack. These additional
two fields did not change the code significantly, so the code version number was not in-
creased. The additional two fields did, however, change the matrix slightly. The matrix of

version 1.0 with MAC addresses is shown in Appendix E for completeness.

It was expected that the system would detect the attack, as two packets coming from
the same IP address but from different MAC addresses could be thought of as abnormal.

However, when trained on the Lincoln Lab’s data used previously, the attack was missed.

Upon analysis it was determined that this was because the training data was collected
from a Lincoln Lab’s sniffer that was located outside the firewall. In such a case, where
there were multiple routers communicating with one another, it is common for packets to

have like IP addresses and different MAC addresses.

This brings home an important point, which is that in order to be most effective,
the IDS must be trained in the same location in the network topology that it is placed
for detection. Therefore, the IDS was retrained on 100,000 packets of Tuesday, week one
data collected from inside the firewall. With this training the attack was detected in cells
(0,1) and (2,3) of the matrix in Appendix E. Here, the attack was detected in the two cells
expected — namely, the TP and MAC addresses of the first and second telnet sessions. From
Appendix E it can be seen that they were detected by the value 14 in both cases. In cell
(0,1) this states that the source IP addresses of two packets were equal, while the source
MAC address of the first packet was greater than the source MAC address of the second.
In cell (2,3) this states that the destination IP addresses of two packets were equal, while
the destination MAC address of the first packet was greater than the destination MAC

address of the second.

This version seemed to work well with limited fields and one protocol, so coding
began to expand the number of fields and protocols utilized by this system. This became
version 2.0. As mentioned earlier, the crosschecking gene was examined in somewhat of
a tangent to the actual focus of the research. This method of gene construction was so
interesting, however, that it could not be left out of the thesis altogether. Therefore, before
going on to the discussion of the main code tests, the crosschecking version tests are first

discussed.

5.4 Version 2.44 Testing

Version 2.44 addressed the crosschecking gene schema discussed in Section 4.6 on
page 4-10. As stated in that section, this version of the code was produced to incorporate
the fields of a MitM attack committed with the use of the hacker program DSniff. While
the crosschecking gene should detect attacks such as the Land attack, where the Source IP

address is the same as the Destination address, the DSniff MitM attack was the “baseline”

5-6

attack for three reasons. First, detecting the Land attack may easily be done with a
signature-based IDS (although it is not done with Snort). Second, detecting the Land
attack with this crosschecking gene is a trivial matter if the packet is going to a known
IP address, which would likely be the case, lest the malicious packets never reach the
target. Therefore, an attack that is more difficult to detect was sought. And third, the
DSniff MitM attack included an ARP spoofing attack, which is particularly threatening
in today’s wireless network [SANSOla]. Hence, a method for detecting this attack needs
to be addressed. The DSniff MitM attack is described in somewhat lengthy detail here,
as understanding the attack allows for a more complete understanding of the detection

process.

With the use of the DSniff program, which contains an ARP Spoof utility, an attacker
can easily sniff traffic destined for any address within even a switched network, as long
as the attacker is located within the same subnet. In the example attack, the attacking
computer was located between two computers, which are called the client and the server.
Since the traffic of a switched network is routed at the NIC level, if an attacker can make
both parties think that the attacker’s NIC is the NIC of the other party, then they will both
send their traffic to the attacker’s NIC address. The attacker then forwards the packets to

the intended recipient, and neither party is the wiser.

The attacker fools each party into thinking that his NIC address is the intended
recipient’s NIC address by means of ARP spoofing. Understanding ARP spoofing requires
a bit of background in Address Resolution Protocol, which is provided here. While Internet
Protocol packets are bound for IP addresses at the IP layer, they are actually sent at the
MAC layer. This means that IP packets are really sent from NIC address to NIC address,
not from IP address to IP address. The NIC address of the next hop in the path toward the
destination IP address is stored in an ARP table. When the NIC address of a destination
IP address is not known, as is often the case since the ARP tables purge old data every
thirty seconds or so, the first thing that needs to be done is to find the NIC address of
the destination. Therefore, the first packet in a session where NIC address of a destined
IP address is not known is an ARP request packet, which is broadcast to the subnet. The
ARP request basically asks “which NIC address has this IP address?” The destination

o-7

address replies with an ARP reply, saying “I do. Here is my NIC address,” and the ARP
table is updated. Then the source can send its traffic toward the destination IP address.

[RFC826]

The problem with the Address Resolution Protocol is that to improve efficiency ARP
tables are updated whenever an ARP reply is heard. This means that the attacker can send
a reply to a request that was never sent, and the ARP table will be updated accordingly.
This is the heart of ARP spoofing—the attacker continually sending out ARP replies stating

that his NIC address belongs to whomever he chooses to spoof.

Figure 5.1 shows a graphical depiction of this attack as it was perpetrated in testing.
Here, the attacker is located at IP address 101.10.10.5, and spoofs the client and server
addresses with bogus ARP replies. As this research did not include the ARP packets, they
were filtered out of the data used to detect this attack. While it is true that the ARP
spoof attack might be detected using the ARP packets themselves, this research focused
on a method to detect this attack without the Address Resolution Protocol, and therefore

uses only TCP and ICMP packets.

Client MitM Server

IP 101.10.10.5

IP 101.10.10.4 IP 101.10.10.6

MAC 1003034170197 MAC 1003034170151 MAC 1003034018001

101.10.10.6 hasMAC 101.10.10.4 hasMAC
address 1003034170151 address 1003034170151

Figure 5.1 ARP Spoof Attack

An interesting thing to note about this attack is that since neither the client nor
the server ever communicate directly with one another (because the attacker is forwarding
their packets), an IDS might not detect the attack except for one thing. The NIC of any
machine examines packets that are sent to it to see if there is a better method of routing

those packets. If there is, it sends an ICMP redirect packet to the sending party (while still

5-8

forwarding on the sent packet). This is where the ICMP packets of this attack come from,
and why it can be detected without examining the ARP packets. The data packets of a
complete telnet session between the client and server, which was forwarded through the
attacker, is shown in Figure 5.2. In this figure the packet number constitutes the packet
ordering, but the ICMP packets were extracted to the bottom because their fields do not
match those of the TCP packets. Again, only those fields that were implemented in the

genes of this version are shown.

Num| Protocol SrclP SrcMac DstIP DstMac SrcTCPPort | DstTCPPort Seq# NextSeqg# | A|P|R|S|F
1 TCP 101010010004 | 1003034170387 | 101010010006 [1003034170157] 1717 21 180179403 0 ojojoj1fo
2 TCP 101010010006 | 1003034018001 TOOS0U34170197 21 1717 72653 0 1]0]0]1]0
3 TCP 101010010004 | 1003034170197 | 101010010006 | 1003034170151 1717 21 180179404 0 1{ojojojo
4 TCP 101010010006 | 1003034018001 | 101010010004 | 1003034170197 21 1717 72654 72703 1]1]0]0]0
5 TCP 101010010004 | 1003034170197 | 101010010006 | 1003034170151 1717 21 180179404 0 1{ojojojo
7 TCP 101010010004 | 1003034170197 | 101010010006 | 1003034170151 1717 21 180179404 | 180179424 | 1]1] 0] 0|0
9 TCP 101010010006 | 1003034018001 | 101010010004 | 1003034170197 21 1717 72703 72745 1]1]0]0]0
10 TCP 101010010004 | 1003034170197 | 101010010006 | 1003034170151 1717 21 180179424 0 1{ojojojo
11 TCP 101010010004 | 1003034170197 | 101010010006 | 1003034170151 1717 21 180179424 | 180179431 | 1]|1] 0] 0|0
13 TCP 101010010006 | 1003034018001 | 101010010004 | 1003034170197 21 1717 72745 72780 1|1]ojojo
14 TCP 101010010004 | 1003034170197 | 101010010006 | 1003034170151 1717 21 180179431 0 1]0]0]0]0
15 TCP 101010010004 | 1003034170197 | 101010010006 | 1003034170151 1717 21 180179431 | 180179437 | 1|1]0f0]O
17 TCP 101010010006 | 1003034018001 | 101010010004 | 1003034170197 21 1717 72780 72787 1]1]0]0]0
18 TCP 101010010006 | 1003034018001 | 101010010004 | 1003034170197 21 1717 72787 0 1]0j0]0]1
19 TCP 101010010004 | 1003034170197 | 101010010006 | 1003034170151 1717 21 180179437 0 1]0j0]0]0
20 TCP 101010010004 | 1003034170197 | 101010010006 | 1003034170151 1717 21 180179437 0 1]ojojoj1
21 TCP 101010010006 | 1003034018001 | 101010010004 | 1003034170197 21 1717 72788 0 1]0]0]0]0
Num| Protocol SrclP SrcMac DstIP DstMac ICMPCode | ICMPType | DatalLength

6 ICI\E 101010010005 | 1003034170151 | 1010010004 | 1003034170197 1 5 40

8 ICMP TOO3U3Z170151 | 101010010004 | 1003034170197 1 5 60

12 ICMP 101010010005 | 1003034170151 | 101010010004 | 1003034170197 1 5 47

16 | ICMP | 101010010005 | 1003034170151 | 101010010004 | 1003034170197 1 5 46

Figure 5.2 DSniff Attack Data Files

Close examination of this data shows why the crosschecking gene was examined.
Looking at packet number one and packet number six clearly show a discrepancy between
the source IP and MAC addresses of packet six, and the destination IP and MAC addresses
of packet one—they have the same MAC address, but different IP addresses. However, this
discrepancy will not be detected comparing strictly source address to source address, or
destination address to destination address. To detect the attack in this figure, a source

address needs to be compared to a destination address—exactly what crosschecking does.

The results of this testing were very positive indeed. Trained on the first 100,000
packets of Tuesday, week one of the Lincoln Lab’s data, the above attack was detected in
cells (0,43) (1,5) (1,43) (2,6) (2,43) (3,43) (4,43) (5,43) (6,43) (7,43) (41,43) and (42,43).

When examined with the example matrix in Appendix C, it can be determined that fields

5-9

(1,5) and (2,6) contain IP and MAC source and destination addresses. These are the
intended antibody cells. The detections in other cells are due to the fact that ICMP
redirect packets are not common, and were not seen in the 100,000 packet training session.
Therefore, the packet length of those redirect packets was also uncommon and was flagged

as an alert.

The Joncheray MitM attack was also tested with this sensor, and was detected in
cells (0,4) (0,14) (1,5) (1,14) (2,6) (2,14) (3,7) (3,14) (4,12) (4,14) (5,14) (6,14) (7,12) (7,14)
(12,16) (12,28). Cells (0,4), (1,5), (2,6), and (3,7) are cells where the attack was detected
with source or destination IP and MAC address discrepancies. The other cells all involved

TCP sequence numbers, which were also anomalous (hence the ACK storm).

The sensor was also tested on the IP Spoof attack mentioned in Section 5.3, and
detected the attack in only cells (0,4), (1,5), (2,6), and (3,7), which are expected. Addi-
tionally, a Land attack (a telnet session, where one packet had the same IP Source and IP
Destination field) was run through this IDS sensor to see if it would detect this attack. It
detected the Land attack in cells (0,1), (0,2), (1,3), (1,4), (1,5), (1,7), (1,14), (2,3), (2,4),
(2,6), (2,7), (2,14), (3,5), (3,6), (3,7), and (3,14).

The fact that these four attacks were detected in the predicted cells and that no
false positive cells were alerted was tremendously encouraging, and further coding was
conducted to expand the crosschecking gene to include the protocols and fields mentioned

earlier. This became version 2.116.

5.5 Version 2.116 Testing

Version 2.116, as stated in Section 4.7, included crosschecking between 32 fields, for
a 116 by 116 cell matrix. This much larger matrix caused a significant increase in the
amount of time required for processing. In fact, where version 2.0 (also with 32 fields) only
took 35 minutes to train on 200,000 packets, this version took nearly six hours. While it
is true that this time requirement is about equal to the time it took to train version 3.0,

it must be kept in mind that this is only a 2-D version. Expanding all 116 fields in a 3-D

5-10

manner, as was done with version 2.0 would be vastly more costly than expanding the

dimensionality of the non-crosschecking genes.

With the same sort of calculation that was conducted in Section 4.4, again considering
that TCP dominates the other protocols, it can been determined that the 2-D crosschecking
matrix of version 2.116 has a maximum of 52,002 comparisons for every two packets.
However, in testing, the additional overhead of the crosschecking code caused this version
to perform about the same as version 3.0 did with respect to time, even though version
3.0 made a maximum of 70,200 comparisons for every packet. That means that with
large amounts of data the crosschecking code performed about 1.3 times slower as the

non-crosschecking gene.

With a little more calculation, it can be determined that the 3-D crosschecking code
would make a maximum of 5,512,212 comparisons for every two packets, and the 4-D
crosschecking code could make 434,086,695 comparisons for every two packets! The latter
is about 360 times as many comparisons as version 4.0. Since version 4.0 took about 22
hours to inspect 200,000 packets, and assuming that crosschecking is 1.3 times slower, this

means that the 4-D crosschecking CIS would take over a year to examine 200,000 packets!

Because this sort of time was not available for this thesis, and the benefits of pur-
suing this line of research were unknown, the crosschecking mechanism was not explored
further, in order to more closely examine non-crosschecking genes. The crosschecking gene
mechanism was not left without regret, however, as the testing conducted on version 2.44
clearly showed its potential use in intrusion detection. Perhaps some bright researcher will
shoulder the task of examining this method of intrusion detection in the not too distant

future.

5.6 Versions 2.0, 3.0, and 4.0 Testing

Versions 2.0, 3.0, and 4.0, each use non-crosschecking genes with less-than, greater-
than, and equal schema of 01, 10, and 11, respectively, and all use the same fields. They
are basically carbon copies of one another with the exception that the number of genes

concatenated together ranges from two to four according to version number. This was

5-11

intentional, in order to determine how dimensionality plays a role in the effectiveness and
speed of relational intrusion detection. Therefore, these versions are tested in a comparison

fashion, with each being subjected to the same attacks and training packets.

There are two important aspects of these versions which require testing—speed and ef-
fectiveness. Since higher dimensionality equates to higher resolution, a higher dimensional
detector would likely detect more attacks than a lower dimensional one. This is because
negative selection removes much of the detection potential of the lower-dimensional chro-
mosomes. Higher dimensionality allows greater selectivity in negative selection, possibly
allowing more of the detection (non-self) space to remain intact. However, the additional
comparison overhead of the higher dimension makes it more computationally expensive.

These two important issues are addressed in the testing below.

5.6.1 Speed Testing. The graph in Figure 5.3 shows the time each version took
to inspect a number of packets. A complete breakdown of the data, as well as the speed
of the other versions of code is shown in Appendix F. These tests were conducted on the
same 750Mhz Intel Pentium-III machine with 128 MB of RAM running Windows 98SE.
The code was run from within the Java program Visual Age 3.5. Modifications could easily
be made to improve the efficiency of these programs, such as running the code on faster
machines, from within the Sun Java SDK environment, or even by coding the program in
a lower-level language such as C or ADA. Some optimization methods were tested, and
with the use of the Java Jet program, which compiles the Java code and runs it without
the use of a virtual machine (much like C does), the run times were cut by more than half.
However, as maximizing the speed of any one version was less of a priority than modular,
easily changeable code, the tests were run with the code as-is. Therefore the times shown
in Figure 5.3 and Appendix F are shown with the caveat that these times can easily be
decreased. The figure should, however, provide a good gauge of how well each version

performs with respect to one another.

Although only versions 2.0, 3.0, and 4.0 were compared with respect to efficiency, the
speed of version 2.116 is also depicted in the figure, as this version also had 32 fields, and

had a similar packet-checking rate as version 3.0. When examining the graph, however, it

5-12

Time Per Version

1000000

100000 . —o— Ver 2.116-Full

/ Crosschecking
10000 /%A —a— V2.0
/A
1000
W/ V3.0
100 +
/ —e— V4.0
10 x

Time (in Seconds)

Number of Packets

Figure 5.3 Run Time Comparisons

should be kept in mind that only versions 2.0, 3.0, 4.0, have the same non-crosschecking
chromosome makeup. Figure 5.3 clearly shows that the increase of packets seems to cause
a nearly linear increase in time in all cases. This is valuable because it allows for the coarse
prediction of times per version, per x number of packets. The graph also demonstrates
that higher dimensionality and crosschecking increases time significantly, as was mentioned
earlier. The variation of these times is small, as is shown in the standard deviations graph

in Appendix F.

As mentioned in Section 4.5 on page 4-10, the 4-D sensor may not be efficient enough
to perform intrusion detection in real time. Therefore, either packets may need to be
dropped, or the 4-D sensor might need to perform a scan of stored packets off-line. Even
if the 4-D was made to run efficiently in a real time environment, still higher dimensional
sensors would at some point become too expensive to run “on the wire.” They may still
have their place, however, because the best defense is defense-in-depth, even if parts of the
defense are run off-line. Additionally, all of the cells in the larger-dimensional matrices
need not always be examined to provide a layer of ID. Some specific cells may be targeted

in a signature-based approach, as discussed in Section 6.3.3.

5-13

5.6.2 Effectiveness Testing. The more difficult aspect of comparing these versions
is demonstrating how well one version detected an attack compared to another. Using the
same fields, higher-dimensional detectors will detect anything that the lower dimensional
detectors find, and (potentially) more. This is because any cell in the 2-D matrix is
contained approximately m times in the 3-D matrix, where m is the number of fields. A
problem with the higher dimensional detectors, besides their speed, is that they require
more training to eliminate false positives since they have so many more chromosomes
to train. For example, version 2.0 has 2,929 possible chromosomes and version 3.0 may
have 70,200 chromosomes, as stated in Section 4.4. Therefore, if x percent of this space
represents self, then there are more self chromosomes which need to be identified during
the training of the higher-dimensional detector. This was indeed born out in testing, as

the results showed a higher false positive rate with the higher dimensionality.

To test these versions against one another, the 1999 Lincoln Lab’s data was selected
for the training and testing sets, for reasons discussed earlier. These systems were trained
on all (1.9 million) TCP, UDP and ICMP packets of Monday and Tuesday data from week

one of the Intrusion Detection Evaluation archive.

After training, tests were run to determine the true positive and false positive rates
of these systems—namely, how many attacks they caught, and how often they alerted
(wrongly) on normal data. A hint to the true negative and false negative rates (how much
normal data was not alerted on, and how many attacks were missed) is also attainable

from the tests posed, as tests were run on both normal and malicious traffic.

The attacks, as they were taken from the Lincoln Lab’s data, are described briefly in
Appendix G [LLab99]. Describing each attack and how it was or was not detected in detail
is beyond the scope of this thesis, as it would fill volumes of text. Many of the Lincoln Lab’s
attacks were not attempted to be detected, and those attacks are not shown. For example,
as some attacks involved host-based attacks that were not visible from the network, such
as a user inserting a boot disk into the victim computer to download malicious code. Other
attacks were present only in the packet payload of the network data. These attacks were

not examined, since this thesis effort focused on a network-based IDS sensor that does not

5-14

examine the packet payload. The remaining attacks, which were thought to be present in

the data sniffed from the Lincoln Lab’s IDS located outside the firewall, were used.

To test the system as thoroughly as possible, tests were run on fifteen different types
of attacks, often with multiple attack files within each type. This made for a total of 24
attacks. In order to make these tests reproducible, an issue that must be addressed is
how the attacks were pulled from the Lincoln Lab’s archive to be tested. This is because
the files of the Lincoln Lab’s Intrusion Detection Evaluation are stored as entire days of
network traffic, with multiple attacks in each day. To test each attack separately, each

attack needed to be pulled from the rest of the data.

In order to extract the attacks, the TCPDump program was used to filter out the
attacks by attack time and source and destination IP addresses. Simply filtering the files
by time was done where possible, but often this was not practical, as some attacks spanned
thousands of packets of other parties communicating. When this was the case, determining
if an alert by the IDS was a true positive (an alert due to the attack) or a false positive (an
alert due to extraneous network activity) might come into question. Therefore, the filters

kept the traffic to as little extraneous activity as possible.

Conversely, attacks 42.145441 and 51.200037 consisted of only one attack packet each.
In order to detect any relational anomalies with these attacks, these packets need to be
compared to something. As the IDS sitting on the wire would observe all packets flowing
through the network, these attacks were filtered to include a few of the normal network
packets that occurred around them. This provided a means of testing the IDS on these

single-packet attacks.

Each sensor was trained on all Monday and Tuesday, week one of the Lincoln Lab’s
data collected from a sniffer outside the firewall, which represented 1.9 million packets
worth of TCP, UDP, and ICMP data. Table 5.1 shows the results from these attack tests
with all three versions of code. The attack names and descriptions are taken directly from
the Lincoln Laboratory database of attacks for repeatability [LLab99]. Again, for a more

in-depth explanation of the attacks, see Appendix G.

5-15

The attacks were also tested against version 1.8.1 of the increasingly popular open-
source IDS Snort. The signatures used to test Snort were the default signatures, down-
loaded on 2 March 2002. This testing was done to give an indication of how well the IDS
of this research performs when benchmarked against a commonly used, well established
IDS. A comparison between Snort and the relational IDS of this research is addressed in

Section 5.7.5.

Attack Description | # Packets | 2D Caught [3D Caught | 4D Caught | Snort Caught
41.162715 Portsweep 10 Yes Yes Yes Yes
42.145441 Land 31 No Yes Yes No
43.080401 Satan 172 Yes Yes Yes Yes
43.093814 Imap 1371 No No Yes Yes
43.164334 Portsweep 4 No Yes Yes No
44.,080000 NT Infoscan 690 Yes Yes Yes Yes
44,110000 DosNuke 53 No No No No
45.181011 Portsweep 9 No Yes Yes No
45,192523 IPSweep 260 Yes Yes Yes No
51.083800 Ping of Death 5 Yes Yes Yes Yes
51.085000 Ping of Death 3 Yes Yes Yes Yes
51.102700 Apache 2 59751 No No Yes Yes
51.142100 Ping of Death 3 Yes Yes Yes Yes
51.180445 SynFlood 20480 No No No Yes
51.194715 DosNuke 10 Yes Yes Yes Yes
51.200037 UDPStorm 13 No Yes Yes No
51.201715 Self Ping 137 No No No No
52.083236 Teardrop 25 No No No Yes
52.094514 Self Ping 196 No No No No
52.130655 Ping of Death 892 Yes Yes Yes Yes
52.165435 Queso 10 Yes Yes Yes Yes
53.110516 Queso 10 Yes Yes Yes Yes
54.145832 Satan 10959 No Yes Yes Yes
54.195951 Mscan 173745 No Yes Yes Yes
Detection Rate: 45.8% 70.8% 79.2% 66.7%

Table 5.1 Lincoln Lab Attacks Test Results

It can be seen from the figure that the higher-dimensional sensors alerted on every
attack that was detected by the lower-dimensional sensors, as expected. Additionally, the
higher-dimensional sensors detected more attacks than the lower-dimensional ones did, as
is shown by the highlighted cells. Some attacks, such as the queso attack, were detected
in so many cells of each matrix (not shown) that there seemed no doubt that it was a true
positive alert. Other attacks had alerts in so few cells, that there was some question as

to if these alerts might be eliminated with more training (potential false positive cells).

5-16

Therefore some testing was accomplished to determine the false positive rate of these

detectors.

To test the false positive rate of the sensors, they were trained on the same data
that was used in the training of the true positive tests—all of Monday and Tuesday of
week one of the Lincoln Lab’s data. The sensors were tested against the first 201,000
packets of Wednesday, week one, as in this way they could be tested against attack-free
data on which they were not trained. Since each of the attacks shown in Table 5.1 are
shown as a detect/not-detect alert for a group of packets, the false positives were tested
in the same manner. Thus, the 201,000 attack-free packets were divided into groups of
packets, and each group was tested to see if there were any false positives within it. The
average size of an attack was about a thousand packets, excluding the three attacks with
the most and least number of packets to avoid skewing the data. Therefore, a test size of
a thousand packets of normal traffic seemed appropriate for testing the number of false
positive alerts in order to make a comparison to the detection rates of Table 5.1. This may
give an abnormally high indication of the actual false positive rate of the IDS, however,
as the number of anomalous relationships within any 1000-packet group may be small.
Therefore, further testing was conducted to split each 1000-packet group into even smaller
sections, and the false positive ratios of these sections were also tested. In all cases, the
same packets were tested. The only difference was the size of the groups. These results

are shown in Table 5.2.

Version 2.0 Numb FP [Numb TN| % FP % TN
FP on 201 runs of 1000 packets 0 201 0.00% | 100.00%
FP on 402 runs of 500 packets 0 402 0.00% | 100.00%
FP on 2010 runs of 100 packets 0 2010 0.00% | 100.00%
FP on 20100 runs of 10 packets 0 20100 0.00% | 100.00%

Version 3.0
FP on 201 runs of 1000 packets 12 189 5.97% 94.03%
FP on 402 runs of 500 packets 12 390 2.99% 97.01%
FP on 2010 runs of 100 packets 11 1999 0.55% 99.45%
FP on 20100 runs of 10 packets 9 20091 0.04% 99.96%

Version 4.0
FP on 201 runs of 1000 packets 51 150 25.37% | 74.63%
FP on 402 runs of 500 packets 60 342 14.93% | 85.07%
FP on 2010 runs of 100 packets 70 1940 3.48% 96.52%
FP on 20100 runs of 10 packets 76 20024 0.38% 99.62%

Table 5.2 False Positive Test Results

5-17

Version 2.0 performed spectacularly, with no false positives at all. This was remark-
able, as that same version detected 45 percent of the Lincoln Laboratory attacks. Version
3.0 did not perform quite as well, however, as it had from 0.04 to 5.97 percent false pos-
itives. Even worse, version 4.0 had from a 0.38 to a 25.37 percent false positive ratio.
It can be seen that the larger the group of packets that were tested, the more likely the
chance of obtaining a false positive alert. This is because there is a small chance of encoun-
tering a false positive with each packet, and the larger groups of packets compound this
chance with each packet of the group. Also, the higher the dimensionality of the sensor,
the more likely a false positive may be issued. This is likely due to the fact that higher
dimensional sensors require more training to eliminate false positives, as discussed on page
5-14. With additional training, using appropriately diverse self-data, the number of false
positives would certainly decrease. However, is also possible that the number of true pos-
itives would decrease as well, since the antibodies that detected those attacks might be

eliminated during more extensive training.

Nevertheless, as the false positive ratios in Table 5.2 were much smaller than the
true positive ratios in Table 5.1 in all cases, this seems to indicate that the number of
detections is expected to exceed the number of false positives. Therefore there seems to

be some value to intrusion detection via relational schemata.

Another way of analyzing the false positive rate may have been to simply count
the number of false positives encountered between every two-packet comparison within all
201,000 packets. This may give a better indication of the true number of false positives
encountered, even though a false positive caused by one packet may cause up to five false
positive alerts in the six-packet sliding window. However, testing the false positives in this
manner involved changing the code used in the rest of the testing. Since the code could be
used as-is to conduct the tests of Table 5.2, and since this would still give some indication
to the number of false positives in the system, the amount of false positives were tested in

the same manner as the rest of the tests with this unmodified code.

5-18

5.7 Analysis of Results

Table 5.2 shows a much smaller ratio of false positives than the ratio of true positives
in Table 5.1. Therefore the attacks were assumed to have some relationships not commonly
encountered in normal network traffic. To determine why the attacks were detected, some
analysis was done regarding the attack packets and the cells in which the attack was

detected.

5.7.1 Low Hanging Fruit. Many of the attacks that were alerted upon were
immediately found to be anomalous upon inspection. Furthermore, the cells in which the
IDS alerted these attacks pinpointed the fields in which the anomalies occurred, which
might assist the analyst in conducting a post-alert forensic analysis. Those attacks are

described in this section.

Attack 41.162715 was a portsweep attack, and was detected in 2D cell (14,15) with
the antibody 11. This attack was detected because the TCP sequence numbers (field
15) were zero in all packets of the attack, as is shown in GOPHER in Figure H.7. The
TCP sequence numbers of all packets being zero is likely a direct result of the hacker
tool used in the attack, and is abnormal as TCP sequence numbers should continually
increment because they identify the byte in the stream of data from the sending party to

the receiving party [Stev99].

The other two portsweep attacks (attacks 43.164334 and 45.181011) were not the
same as attack 41.162715, even though they were still labeled as portsweeps in the Lincoln
Lab’s Data. They were different because they were targeted at different services, and the
TCP sequence numbers of these attacks incremented normally. Thus, these portsweeps
were not detected with the 2D sensor, as portsweep 41.162715 was. However, both of these
attacks probed the chargen port of the victim with a reset packet, and this is where they
were detected. Attack 43.164334 was detected in the 3D cells (7,22,23) and (22,23,25),
and attack 45.181011 was detected in cells (0,8,22), (7,22,23), and (22,23,25). This is
noteworthy because Mansfield states that “Intrusions are in general characterized by some
noise or indication of the intruder groping for a door, trying (unsuccessfully) a key, etc.

In the network context these signals may be seen in the TCP reset packets and the ICMP

5-19

echo-response or destination/port unreachable packets [Mans00]” That noise was captured
here with an alert due to the TCP reset packets. Each of these cells was alerted on due to

the reset packet (field 22).

The queso attacks 53.110516 and 52.165435 were alerted on for multiple reasons.
Amazingly, they were both alerted in the exact same 55 cells, or the 2D cells (0,17), (0,18),
(1,17), (1,18), (2,17), (2,18), (3,17), (3,18), (4,17), (4,18), (5,17), (5,18), (6,17), (6,18),
(7,17), (7,18), (8,17), (8,18), (9,17), (9,18), (10,17), (10,18), (11,17), (11,18), (12,17),
(12,18), (13,17), (13,18), (14,17), (14,18), (15,17), (15,18), (15,20), (15,23), (16,17), (16,18),
(16,21), (17,18), (17,19), (17,20), (17,21), (17,22), (17,23), (17,24), (17,25), (18,19), (18,20),
(18,21), (18,22), (18,23), (18,24), (18,25), (20,21), (20,24), and (23,24). It is assumed that
both of these attacks were conducted with the same hacker tool, and therefore they had
the same type of packets. All of the packets of these attacks either had the same TCP
sequence number, or were TCP resets (which also had the same TCP sequence number,
but one that was different from the non-reset packets). Additionally, both of these attacks
had a packet with the TCP CWR, ECHO, and SYN fields set simultaneously (fields 17, 18,
and 23, respectively), and included a simple TCP FIN scan. The TCP sequence number
and reset fields have already been shown to be a possible indication of anomalous activity.
The CWR and ECHO fields being set simultaneously is a possible indication of the queso
attack [Sans99] and a these two fields being set generated alerts in multiple fields. A TCP
FIN scan is possibly identified by the TCP FIN and ACK fields being set simultaneously
(fields 20 and 24, respectively) [Chap01]. The FIN scan was also not commonly found in
training (since it was alerted on), and was picked up in all cells with field 24. The multi-
ple alerts of these two attacks clearly demonstrate the usefulness of this type of intrusion
detection, as the alerts that were generated pointed to several packet fields which arose

suspicion regarding the attacker’s activities.

The Ping of Death (PoD) attacks, or attacks 51.083800, 51.08500, 51.142100, and
52.130655 were all alerted on with antibody 15 in cell (0,30). This was because the IPID
field of these attack packets was static (did not increment). This is abnormal because
the IPID normally increments by one each time a datagram is sent [Stev99]. What is

interesting about this cell is that the attack was alerted on in not only field 0 (the IPID

5-20

field), but also field 30, which is the ICMP Type field. Upon examination of this field, the
ICMP type was ECHO, which is a possible indication of a ping sweep [McCl99]. Thus,
with one cell, this alert pointed to two different anomalies of this attack. In addition
to being detected in cell (0,30), the PoD attacks 51.085000 and 52.130655 also generated
alerts in cells (0,3), (1,3), (2,3), (3,4), (3,5), (3,6), (3,7), (3,8), (3,9), (3,10), (3,11), and
(3,12). It can be seen that the common denominator of these cells is field 3, or the TCP
more fragment field. The PoD attack is a Denial of Service attack where the attacker sends
very large ICMP packets in an attempt to crash the victim machine [McCl199]. The packets
that were alerted on had an ICMP data length of 1472 bytes, which is rather large, and

the more fragment bit set. This might help to identify the traffic as a possible PoD attack.

Attack 51.194715 was a dosnuke attack and was alerted on in cells (12,16), (12,19),
(15,19), (19,20), (19,23), (19,24), and (19,25). This is because this attack had a packet
with the TCP URG, ACK, PUSH, and FIN set simultaneously (fields 19, 20, 21, and 24,
respectively). This is obviously abnormal, and is a possible indication of an attack similar

to the TCP XMAS scan [Chap01].

Attack 54.145832 was a Satan scan. This attack was alerted on in the 3D cells
(7,10,27), (7,26,27), (10,12,27), (10,27,28), (12,26,27), and (26,27,28). Field 27 is the UDP
destination port, and upon inspection of these packets it is immediately recognizable that
this is a scan to the UDP source ports. This can also be seen with GOPHER, as is shown
in Figure H.3.

The Mscan attack 54.195951 was alerted in the 3D cells (1,9,15), (1,11,15), (1,15,20),
(1,15,22), (1,15,24), (2,15,20), (2,15,22), (13,14,22), and (13,15,24). Much like the portsweep
attacks discussed previously, the TCP sequence numbers of this attack (field 15) were a
cause of these alerts. Strangely enough, unlike the portsweep attacks in which the TCP
sequence numbers remained static throughout the attack, the TCP sequence numbers of
this attack seemed as likely to increment as to stay the same. Nevertheless, there were
enough static sequence numbers to indicate a clear anomaly. Furthermore, upon inspection
of these attack packets, it is immediately apparent that a scan is being conducted, as is

shown in Figure H.6.

5-21

Attack 45.192523 was an IP sweep attack, and was alerted in cells (1,30), (2,29),
(2,30), (2,31), and (10,30). The TTL was normal, but the ICMP types were echo requests
and replies, as have been alerted on previously. Additionally, the IP do not fragment
bit was alerted on when the victims replied to the sweep. Curiously enough, out of the
six victims that replied to this attack, only two set the IP do not fragment bit (and
generated alerts with the attacker’s traffic). Still, since these two replies were compared
in a sliding window of six packets, each generated an alert on the five packets above, and
the five packets below their reply, generating alerts on 20 packet relationships. This might
be enough for an analyst to detect the IP sweep attack, as the sweeps were conducted
consecutively. It is immediately clear upon inspection of the attack traffic that this is an

IP sweep, as is shown in Figure H.1.

5.7.2 Higher Hanging Fruit. Some of the attacks were alerted in fewer cells
or fewer packet relationships, and the post-alert analysis of these attacks did not seem
to provide quite as good an indication to the type of attack that was being conducted
as the alerts previously seen. While these alerts still indicate some level of anomalous
activity (since they were not found in training), the alerts themselves often provided no
solid indication of an attack when the packets and cells were inspected. These alerts are

discussed in this section.

The Land attack, or attack 42.145441 was alerted on in the 3D cells (1,23,25),
(9,23,25), and (11,23,25). Fields 23 and 25 were the TCP SYN and header length fields,
respectively, and there seemed nothing anomalous with these fields. However, the single
packet of this attack had a Time To Live (TTL) (field 1) about four times greater than the
non-attack packets that followed it. This is anomalous because the packets from one node
to another are likely to travel the same route [Stev99], and therefore they would likely
have the same TTL value. The 3D antibodies picked up this anomaly in cell (1,23,25).
This attack had an IP source address which was spoofed to be the same as the IP des-
tination address, and it is interesting to note that the attack was detected in the source
MAC (field 9) and destination MAC (field 11) addresses. These fields point out the source
and destination MAC address of the attack packet, and thus, indirectly, point to the IP

5-22

source and destination addresses. Upon inspection of the alert and this packet it is likely
that a network analyst would notice that the IP source and destinations are the same—the
definition of a Land attack [McC199]. However, the cells of this alert do not, in themselves,

provide a concrete indication of the attack.

The NT Infoscan attack, or attack 44.080000, was alerted on in cells (0,2), (0,20),
and (0,22). The common denominator of these cells was field 0, or the IPID field. How-
ever, upon inspection of the attack packets, it was noticed that nearly all of the IPIDs
incremented normally. One instance where the IPID field did not increment was picked up
by the IDS in these three separate fields. This instance occurred between packets number
6 and 10. Packet 6 had the do not fragment bit (field 2) set, and was an ACK (field 20).
Packet 10 had the same IPID number, and was a reset reply (field 22) to packet 6. These
two packets, and these fields did not seem to provide any clear indication of the attack. It
should be noted that the IPID does not always increment in normal traffic. Indeed, this
can be demonstrated because when the same IPID was encountered between packets 6 and
10, only 3 cells were alerted on, not the rest of the cells in the zero row. While the IPID
not incrementing, and the TCP reset and IP do not fragment bits being set are possible
indications of an attack, it was difficult to notice that an attack was being conducted solely

by these alerts.

The first packet of the Satan attack 43.080401 was an ICMP echo request packet
sent to the victim. The second packet was an ICMP echo reply from the victim to the
attacker. This attack was alerted in only cell (1,30) from only these two packets. These
ICMP types are possible indications of ping sweeps [McCl99], and are possible indications
of anomalous activity in general [Mans00], so this alert might provide some indication of an
attack. However this one alert based only on two packets of traffic did not seem to provide

as clear an indication of the attack as some of the other alerts previously discussed.

The rest of the attacks that were detected were alerted in cells that provided some
indication of an attack, but only a slight indication. These types of alerts might easily be
overlooked as false positives. These alerts were generated by ICMP echo request/replies,
TCP resets, IP do not fragment bits, and like TCP sequence numbers similar to the alerts

of the previously discussed attacks. However, often this was only slightly anomalous and

5-23

was picked up only by 3D or even 4D sensors in very few fields by a very few packets. With
these remaining attacks, no clear-cut means of identifying that an attack was in progress
could be found simply by looking at the alert cells and the packets that generated them.
While these alerts were not false positives, they may cause the analyst headaches trying

to figure out why an alert was issued.

5.7.83 Unreachable Fruit. Some of the attacks went undetected. These attacks
were the dosnuke attack 44.10000, the SYN flood attack 51.180445, the self ping attacks,
and the teardrop attack. Upon inspection of the attack packets, both with GOPHER and
with Ethereal, no anomalous traffic stood out. Therefore these packets were overlooked
by the IDS. The fact that these attacks were ignored by the IDS demonstrates that this
method of relational intrusion detection will not detect all attacks. It is merely another
layer in the defense to detect attacks that may go unnoticed by other means of intrusion

detection.

5.7.4 Fruit With Worms. One attack, the UDPStorm attack 51.200037, was
alerted upon in the 3D sensors in cells (1,8,26), (1,8,27), (1,8,28), (8,9,11), (8,9,26), (8,9,27),
and (8,9,28). Inspection of the packets of this alert showed that indeed, the alert was
generated from the attack packet and a normal UDP packet close to it. However, this alert
was also generated on that same normal UDP packet and another (normal) UDP packet
within the 13 packets of the attack file. This means that the “anomalies” picked up in
those fields are seen in normal network traffic, they were just not detected during training.
Therefore, although this alert pointed to the attack packet and might assist an analyst
in detecting this attack, it would also issue false positives that the analyst would have to
put up with. With more training the antibodies that generated this alert would likely be
eliminated, but then this attack would go undetected. Thus, the choice of the analyst is to
endure false positives to detect this attack, or risk missing the attack to reduce the false

positive rate of the sensor.

5.7.5 Comparison To Snort. The relational IDS of this research performed some-

what comparable to Snort version 1.8.1 when the 2D, 3D, and 4D sensors are considered.

5-24

It did detect some attacks that went undetected by Snort. For example, the Land attack
was detected due to an abnormal TTL, and MAC addresses, as discussed previously. This
attack, however, was not detected by SNORT. Similarly, the reset to the CHARGEN port
in attacks 43.164334 and 45.181011 and the IP Sweep attack 45.192523 was alerted upon
by the relational sensors of this research, but went undetected by Snort. This demonstrates

that this system can detect some attacks that are missed by other IDSs.

Still, Snort detected 66.7 percent of the attacks, and it must be kept in mind that
when Snort detected these attacks, it provided a description of the possible attack to the
analyst, which is very beneficial. Snort even detected an attack that went undetected by
all the relational sensors of this research—the Teardrop attack (and Snort identified it as
a Teardrop attack). Additionally, when attacks were not detected by the 2D sensors, and
were only detected by the 3D or 4D sensors of this research, there was much less of a
confidence in the alerts. Therefore, although the 4D sensors surpassed Snort in detection
capability, the confidence level of these detections was not as high as the confidence level
of the Snort alerts. Thus, additional work is likely required before the IDS posed in this

research would be adopted by most network defenders.

5.7.6 Discussion of Attacks. Table 5.1 shows that the LAND attack was not
detected in version 2.0, but was detected in versions 3.0 and 4.0. Much like the ARP
Spoof attack described in Section 5.3, it is likely that this attack was not detected with the
two-dimensional sensors because the IDS was trained with traffic from outside the firewall.
Therefore, the 2D antibodies that detect the IP addresses of two packets being equal, but
the MAC addresses not being equal were eliminated during training. It is certainly possible
that this attack was alerted in antibodies in version 3.0 which might be eliminated during
more extensive training, and the attack would be missed even by version 3.0. Conversely, it
was assumed that the attack would be detected even in the 2-D version when the IDS was
trained and tested inside the firewall. This turned out to be the case, as this attack was
detected in the 2D cell (8,9) when the IDS was trained on 200,000 packets from Monday
week one of the Lincoln Data taken inside the firewall. Again, the placement of the IDS

may affect its performance.

5-25

Some of the attack packets were excluded from the filtered attack data during the
filtering process, either due to limitations of the TCPDump filter, or erroneous data in
the Lincoln Labs database of attacks. During filtering TCPDump sometimes gave “Bad
Packet” errors, and dropped packets from the data. It is clear that the actual network
did not drop these attack packets, as they were present in the data file. Therefore, these
packets should have been included in the attack file data sent through the relational IDS
sensor. Example of this situation is the Land attack 55.163447, the TCP Reset attacks
53.092039 and 52.081109 and the Reset Scan 54.170132 of the Lincoln Lab’s data. Multiple
attempts were made to filter these attacks from the data, but every time the TCPDUMP
filter dropped packets until there was no attack traffic left to test. Moreover, the same
packet problems that were detected by TCPDump (and caused packets to be dropped)
may have caused alerts with the IDS. Therefore, some attacks that were tested and missed
might have actually not been missed, had all of the attack packets been present. The
limitation of the TCPDump filtering may have actually caused the tests to perform more

poorly than they would have in a real network environment.

A point worth mentioning is that the antibodies of version 2.0 detected some attacks
that contained only a few attack packets after filtering. For instance, the Ping of Death
attacks 51.14210 and 51.085000 had only three packets each after filtering. Therefore, there
were no normal packets with which to compare these packets, yet they were still detected.
On the other hand, attack 54.195951 had 173,745 packets, and it was not detected with
the same 2D sensors. This shows that the relationships between the packets is much more
important than the number of packets in the attack. Since the relationships, not the
number of packets, are what matters, the relational detection schemata of this research

might be one way to detect some “low and slow” attacks.

Indeed, one of the most common methods of “low and slow” attacking is to spread
out a scan or send multiple probes over an extended period of time. Interestingly, many
of the attacks that were detected by these code versions were scans or probes. Therefore,
this research may be one step closer to providing an additional solution to the “low and

slow” problem beyond the typical counter mechanism.

5-26

To that end, although this research poses a relational IDS sensor, and it is therefore
a multiple-packet sensor, that does not mean that this sensor cannot detect single-packet
attacks. For example, the UDP Storm, attack number 51.20037 of the Lincoln Lab’s data,
included only one attack packet. However, when it was compared to the normal network
packets around it, an alert was generated. This is one example of how a multiple-packet

sensor can detect even single-packet attacks.

The multiple-packet relational sensors of this research might even be useful in other
areas of network activity analysis. For instance, they may help to point out unknown
mechanical failures, or poorly configured equipment, as the network traffic generated in

these instances may lie outside the previously defined (healthy) self.

5.8 GOPHER Use

A secondary goal of this research was to develop a graphical tool to assist the operator
in determining if IDS alerts are truly attacks, or merely false positives. GOPHER became
that tool. In fact, during this research GOPHER was used to visualize several attacks in
order to better understand them and the network traffic around them. In effect, GOPHER
was demonstrated to be useful as the tool it was designed to become. This is because
GOPHER often allowed for a quicker understanding of vast numbers of network packets
than is possible with textual-based programs. In fact, when a certain aspect of network
packets was sought, such as packets with a field value in a certain range, GOPHER often
presented this information in near-real time. This is because the slider filtering allowed
for vast volumes of packets to be waded through almost instantaneously. For instance,
while analyzing the MitM attack discussed in Section 4.1 to determine why it was missed
in training, GOPHER was used to quickly sort through mounds of networks packets. With
the use of a single slider, thousands of packets were whittled down to a handful of packets
with the reset field set, which could then be easily examined to determine why the attack
was missed. While the fields of GOPHER did not evolve to match the code as the code
evolved, GOPHER still visualized a few attacks very well; so much so in fact, that the

visualization techniques of GOPHER might be of significant value if incorporated into

5-27

an IDS itself, as well as in network packet examination programs such as Ethereal or

TCPDump.

For example, many research-related attacks, which were conducted by other col-
leagues in the AFIT Information Systems Security and Assurance (ISSA) track, were ex-
amined during this research. When viewed with GOPHER, the network data in some of
these attack files could quickly and easily be seen to be abnormal. As an example, Figure
5.4 shows one of these attacks, sniffed from a network during a Syn Flood. Even without
using GOPHER's sliders to filter the data, it is immediately apparent that the visualized
network data is abnormal-there are three large spikes present. This is because the attacker
sent the same SYN probe over and over again from multiple ports of his machine to one
port of the victim machine. The three spikes depict IP identification number, multiple
TCP source ports, and a continually increasing TCP sequence number. These three spikes
of attack data would be prominent, even intermixed among more chaotically represented

normal network activity, which would be similar to Figure 4.6 of Chapter IV.

[25 1sansmission Control Protacel (TCP) Analpsis

24330 [240740
255 2551

54 547
100 1008
0 09
o 010
10 1011
192 192 12
168 168 13
10 wH
1 115
a0 a0 16
54 5417
n 65290 18
0 19
aexzszels |

1865478402 20
021

022
023
024
025
026
27
128
929
|Packet_218 ¥ i Packet 218 ¥

Eeroocococo

10 11 12 13 14 15 16 17 18 19 20

o 1 4 3 9 1 22 23 24 25 26 27 28 29 v/ Normalize to Packet Ranges
el RR DR > B 2 gl B g B R ol Less Fine Grain
| Field Breakouls
Return to Overview
[Packet_1 =]
Packet_2 &
> g 2 f1> > Packet_3 -

X X X X X X X X X X X X X X X X X X f.X X X X X X X X X

Figure 5.4 SYN Flood Depicted by GOPHER

Another example, this time with a Lincoln Lab’s attack from Figure 5.1, is depicted
in Figure 5.5. This figure shows the first 238 packets of attack 51.180445 visualized with
GOPHER. Textually, it may be difficult to discern that there was an attack taking place,

5-28

or what the attack consisted of. But graphically, it is instantly apparent that there are
many TCP source ports all probing one of twelve TCP destination ports. In the rest of the
attack this pattern of activity was repeated over and over again, cycling through the TCP
destination ports. Therefore, when all 20,480 packets of the attack are loaded, GOPHER
shows a sea of black in the TCP source and destination ports, revealing that thousands of

ports are being scanned.

[=8 Transmission Contiol Protocel [TCP) Analysis

‘ w99z | . 241290
It W et [T A A | e -
) & e e O HOE | o a2
I PR I BT : 34‘
ﬂ' B T [B IR | 0 a5
‘ TR R s 20 206
". I A R R a H
i I O T [R e | 20 200
". T T A % 3010
‘l. Al ;2 1:;:;
3 (R R | = 18 13
I S Y el O TS) uz 2u
v e TR AR I 50 50:2

40 40
IR TR b+ 617
I S s I O A | 673 n 65345 18
I S Y Y TR SRS | 1 121
£s | 40300803 1869082882 20
i [} 021
o 22
bbb DEEPRPERPEDRPEEPDEDEDDEDDDDDD 8
[024
o 025
o 026
o 027
1 128
429
Packet 1 | Packet 238 +

@ 1 1 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 v Normalize to Packet Ranges

bbb B > BB E nnp kbR RRD Less Fine Grain
Field Breakouts
‘Return to Overview

Packel_1 =
| Packet_2 =
> M 1 glisid 1 Al =28 = > S : Packet 3 =l

K K X K K ¥ K % K K % Kk X ¥ K % K X X X X X X X X X

Figure 5.5 Attack 51.180445 Visualized With GOPHER

Visually depicting scans was one of GOPHER's strengths, as it shows divergence
from and convergence to a point very well. Other scans which were immediately apparent
when viewed in GOPHER were the IP Sweep in Figure H.1, the Satan scan in Figure H.2
and the Mscan in Figure H.6. With these attacks GOPHER presented the attack to the
analyst in a visual manner, allowing unwanted packets to be filtered if desired. An example
of this is depicted in Figure H.5. Here, GOPHER’s sliders were used to filter traffic coming
only from a few TCP source ports. This provides a visual slice of the scan, and shows
how this Satan scan swept through groups of six TCP destination ports from a smaller
subset of TCP source ports. This type of visualization and filtering may assist in better

understanding the attack.

5-29

Two of the other capabilities of GOPHER are concentrating on a specific protocol,
and showing when packets were similar or different. For example, in the Ping of Death
attack in Figure H.8 there were 892 packets in the filtered data file. The Ping of Death is
an ICMP attack, and the non-ICMP packets were simply normal traffic included by the
filter. However, there were only 17 ICMP packets, intermixed among 875 TCP and UDP
packets. The IDS alerted on the ICMP attack packets, so this was what was desired to
inspect. With a simple click GOPHER drilled down to view only the 17 ICMP packets.
Additionally, among these 17 ICMP packets, one packet was repeated 13 times, and another
was repeated twice. Therefore these 17 packets looked like only two packets. This might
indicate an anomaly—to the analyst that knows that the data consists of 17 packets. The
problem with this is that if the analyst does not know that one line is depicting more than
one packet, he may not notice anything anomalous. Therefore, the parallel coordinates
system of GOPHER. can be a double-edged sword. It can serve to point out repeated
packets (often an indication of an attack), by showing fewer lines than the number of
packets loaded, and it can also obscure repeated packets from consideration. One way of
preserving the former while mitigating the latter might be by encoding an intensity factor

into each line. For example, a line may grow darker each time it is repeated.

While analyzing the Lincoln Lab’s attacks, GOPHER was used to visualize the at-
tacks to better understand them or to look for anomalies. In a few instances GOPHER
pointed out that the data files of the “attacks” that were being tested contained no attack
packets at all. For instance, the Reset Scan attack 54.170132 of the Lincoln Lab’s data
was originally filtered from the Thursday week 5 data based on the time and IP source and
destination addresses provided in the Lincoln Lab’s database of attacks [LLab99]. After
filtering, the data file contained 2037 packets. When tested along with the other Lincoln
Lab’s attacks, no alerts were generated with the 2D or 3D sensors. This was unexpected
since many of the other attacks were detected because of TCP reset packets. When viewed
by GOPHER it was noticed that there were no TCP resets in the 2037 packets of the data
file—unusual for a Reset Scan. Upon examination it was noticed that this file contained
only the victim communicating, and all of the attack packets were eliminated from the

data by the TCPDUMP filter. Therefore this file was removed from consideration in the

5-30

performance of the relational IDS sensors, as there were no attack packets to test. This
did, however demonstrate the potential effectiveness of GOPHER’s slider filtering once

again.

One additional slider that should be added to GOPHER to assist in network packet
analysis is a time slider. This slider could be located on the bottom of the screen, and could
filter out packets temporally. This may prove very useful if the user wishes to view only a

specific time segments of the traffic, which is often the case in network packet analysis.

The figures in this section and Appendix H demonstrate that anomalies in network
traffic can be visualized well via a parallel coordinate systems such as GOPHER. If GO-
PHER were to maintain a history of network packets, then when an IDS alerted on a
potential attack, the network analyst might use GOPHER to dig through the network

traffic more quickly. This may make his job easier as well as keep the network more secure.

5-31

VI. Findings and Conclusions

The previous chapters discussed how schemata representing multiple-packet relationships
can be used in the context of a computer immune system to detect both known and
unknown network intrusions. They also discussed how different types of schemata may
be used to create different genes, changing the speed and effectiveness of the detection
mechanism. The benefits and limitations of this type of intrusion detection are discussed
in this chapter, along with a brief téte-a-téte on GOPHER as a method for multiple packet

visualization. Finally, the chapter concludes with some suggestions for future study.

6.1 Benefits

6.1.1 Relational Schemata. Discussed in this research were two different rela-
tional schema, and two methods of mapping these schemata to genes. The 0/1 schemata
of equal/not-equal relationships have the advantage of speed and ease of understanding,
however they may miss some attacks. Two-bit schemata were used to represent equal,
greater-than, and less-than relationships to provide a packet ordering mechanism. It was
demonstrated how packet schemata could be mapped in a direct, and in a crosschecking
manner to produce different intrusion detectors. Each of these detection mechanisms var-
ied in their makeup, and therefore they varied in their intrusion detection capability as
well. Each may someday provide its own layer in the defense-in-depth paradigm, closing

the gap in finding malicious network activity.

6.1.2 More Difficult Detection Avoidance. Intrusion detection and intrusion
avoidance are never-ending battles. The good guys put up massive walls of defense, only
for the bad guys to search for and exploit any crack in that defense. In turn, the good
guys patch that hole (or put up another wall), only to have the bad guys find another flaw
to take advantage of. One problem with signature-based detection is that known attacks
may be modified only slightly to slip past the sensor. Although anomaly detection makes
sidestepping detection harder, it can still be done with single-packet anomaly detectors.
The complexity of avoiding detection becomes much harder, however, when the attacker

is trying to avoid multiple-packet relational sensors. This is because the attacker must

6-1

now consider not only the packets of his attack, but also how those packets relate to one

another, as well as how they relate to all possible surrounding normal network traffic.

6.1.3 CIS Framework. The CIS framework addressed in this research provides
a foundation for understanding and expressing both the concepts of self and of non-self.
By expressing self in terms of genes and chromosomes, and non self in terms of genes and
antibodies, these structures may fit into preexisting immune system models of intrusion de-
tection. This may serve to bring relational antibodies into the traditionally non-relational
immune system intrusion detection paradigm, and thereby increase the intrusion detection
effectiveness of the overall immune system. Along with detecting attacks, as an anomaly
detector, this framework may assist in detecting other network disturbances as well, such

as mechanical failure or poorly configured equipment.

6.1.4 Low and Slow Attacks. This research provided a mechanism for detecting
multiple-packet attacks beyond a simple counter mechanism, which is currently the primary
engine in detecting attacks such as scans and probes. Since a counter depends on checking
x packets in a t time window, it is easily defeated by “low and slow” attacks. Many scans
and probes were detected in the testing done in Chapter V, and this suggests that the
packets of scans and probes may have anomalous relationships. Since the relationships
between packets depends more on the values of the fields than the number of packets,
this research may assist in the development of a more robust “low and slow” detection
apparatus. On the other hand, some “low and slow” attacks may only be detected by
relationships strictly between attack packets (and not by relationships between attack
packets and normal network traffic). If these attacks are perpetrated such that no attack
packets occur close to one another temporally, then the window size of this research may

significantly limit their detection.

6.1.5 GOPHER. The parallel coordinates system utilized by GOPHER, provided
a uniquely useful way to view multiple packets simultaneously, while also allowing for the
filtering of traffic according to user-defined criteria. This may greatly increase the speed

and depth at which a user can understand network activity beyond what may be possible

with current, textual-based programs. While the visualization methods used in GOPHER
took a backseat to the relational CIS used in intrusion detection, they may actually turn
out to be just as beneficial. If these techniques were incorporated into existing network
analysis tools such as TCPDump or Ethereal, an analysts might be able to sort through
alerts much quicker, weeding the true positives from the false positives. GOPHER may

itself play a significant role in providing more secure networks.

6.2 Limitations

6.2.1 Packet Payload. One limitation to the research posed is that it is limited
to non-payload attacks. By not considering packet payload, a vast number of attacks are
overlooked, and therefore will likely go unnoticed by this means of intrusion detection.
Therefore, this research is not designed as a stand-alone effort in ID, but rather as another
layer in an enterprise-level defense-in-depth effort. This is not to say that this method of
ID cannot detect attacks that occur in the payload portion of an attack. For instance, a
victim’s response to an attack may create abnormal relationships in normal network traffic
(such as an ACK storm). It is more that detecting attacks that involve strictly the payload

portion of the packet is much less likely.

6.2.2 Alert Confirmation. Unlike signature-based detection, one of the most
common limitations to anomaly-based detection, such as the relational antibodies in this
research, is determining what caused an alert. Since the antibodies of the CIS only show
abnormal relationships between packets, a network forensics effort must be undertaken to
determine why the alert was issued. Even considering that this research can provide two
packets, cell information (in the form of fields compared), and the relationships between
these fields, alert confirmation might still be a timely and grueling task, as it sometimes
was in this research. This is why the GOPHER project was undertaken. With the use
of GOPHER, determining why an alert has been issued in the CIS model of ID might be
a less costly in terms of time and effort, because GOPHER provides another tool to the

network data analysis toolbox.

6.3 Future Research Opportunities

This research opened a door to using the relationships between packets, not neces-
sarily the packets themselves, as a means of intrusion detection. In doing so, it also opened
the door to a multitude of future research possibilities. Some of the more lucrative areas of
future research are discussed here. This is by no means a complete list. It does, however,

present some areas that may be of benefit in intrusion detection.

6.3.1 Ezxpansion of the CIS Model. Many of the aspects of the CIS ID model
mentioned in Chapter II have not been implemented in this proof-of-concept research. For
example, the antibodies of this research were only conceptually implemented, and therefore
had a permanent lifetime. Since the representation of self changes with time, antibodies
should also be able to change in order to protect the environment. Therefore, antibodies
should have a limited lifespan and should reproduce and die, changing along with self.
Another, perhaps very lucrative method of expansion, is the addition of costimulation to
the research mentioned here. This is perhaps very lucrative because nearly all attacks were
detected in multiple cells at once. The queso attack, for instance, was detected in nearly
60 cells in the 2-D version, in 800 cells in the 3-D version, and in about 17,000 cells in the
4-D version. The number of cells with which an alert is issued might be a very easy, and

potentially useful way of eliminating false positives through costimulation.

6.3.2 Statistical ID. In training a CIS on normal data, the relationships between
fields which might occur very infrequently, yet were still seen in training, were eliminated
as detectors. Therefore, when these rare relationships were seen during testing, they were
overlooked as possible alerts. Using relational statistics may be one very important method
of ID. For example, if a statistical history of packet relationships was collected, then a
sensor could be built that could detect attacks because of an abnormal number of these
rare cell relationships. What may prove very beneficial with this sensor is that it may easily
incorporate a “dial” mechanism, where the network analyst could tune the dial to make
the IDS more, or less sensitive. This is advantageous because many of today’s IDSs are an

“all or nothing” effort, and are not easily adjustable according to the network threat level.

A sensor using statistical data of relational patterns can overcome this problem, providing

more, or fewer alerts as specified by the network analyst.

6.3.3 Developing Relational Signatures. The relational sensor mechanism posed
does not have to be part of an anomaly detector, as was done here. Once inappropriate
relationships (those that occur only in known attacks) are found, they could be incorpo-
rated into existing signature-based detection systems. For example, the source IP address
equals the destination IP address relationship, which is a possible indicator of the Land

attack, might be fed into existing signature-based IDSs.

Even as the higher-dimensional matrices become too computationally expensive to
examine all z-dimensional relationships, a few select cells from this matrix may be useful
for incorporation into signature-based detection. In this way, without examining every
relationship in an z-dimension matrix, some of the benefit of high-dimensional relational

detection can be achieved without the added cost.

Researching how anomalous relationships of known attacks could be converted to
signatures for existing IDSs was not done here, as this research posed a method of detecting
unknown attacks, not pinpointing the anomalous relationships among all known attacks.
However, as more study is conducted in this area, the anomalous relationships posed by
many attacks may be collected into a database of relational signatures, which could be one
more means of detecting known attacks. In this way, even if the attacks were modified
slightly to slip past the other signatures, they may still be picked up by the relational
signatures. This not only provides an additional layer of security, it also supplies the

potential for detecting and identifying new, as well as modified, attacks.

6.3.4 Relational Host-Based ID. The majority of research presented here dealt
with network-based ID, not data specific to any one host. That is not to say that the
network-centric ID posed cannot be extended to host-based ID as well. For instance, the
genes of this research could be modified to examine relationships between host-specific
system processes, vice examining relationships between network packets. One example of

this might be to have the equal gene be mapped to system processes or file accesses that

occur concurrently, the greater-than gene could be mapped to one action occurring before
another, and the less-than gene could be mapped to one action occurring after another. In

this way the relational genes could become temporal vice numerical sensors.

6.3.5 Relational Schemata Changes. This proof-of-concept research included
only equal, not-equal, greater-than, and less-than relational schemata between two packets
at a time. Further research might extend these relationships to include other nominal,
ordinal, or even quantitative relationships. Additionally, relationships may be user-defined
or span more than two packets, and other crosschecking field schemata. The type of
relationships used in a CIS is only limited to the language with which the packets and

fields are represented, and the imagination of the programmer.

6.3.6 Statistical Lack of Relationships as an Indicator. Another method of ID
is to use the statistically abnormal lack of relationships. For example, in normal network
TCP activity there are z handshakes per y packets of network traffic. If ¢ is some statistical
threshold (for example 2 percent) and the relationships that would normally occur during

g — t percent of time, then there may be something

these handshakes do not happen in
wrong with the network (such as a denial of service flood). Just as an abnormally high
amount of relationships may be an indicator of something amiss, so might an abnormally

low amount of relationships.

6.3.7 Stochastic Packet or Field Selection. This research deterministically ex-
amined all relationships between packets in a sliding window of six packets. This was just
a foundational starting point for this research, and the size of this sliding window may be
adjusted to more quickly or effectively detect intrusions. Additionally, this deterministic
method of field and packet selection might be traded, instead, for a stochastic packet-
picking, or field-picking method. If packets, or fields, could be selected in a stochastic, vice
deterministic manner, they might better be able to address the “low and slow” problem

without being as limited to time or memory constraints.

6.4 Concluding Remarks

This chapter gave some of the benefits and limitations of using relational-schemata, in
the context of a Computer Immune System, to detect multiple-packet network intrusions.
It also discussed the use of parallel coordinates in an interactive manner, to visualize
network traffic. This may allow the user to more quickly and efficiently identify the source
of an IDS alert, as well as provide for a more comprehensive understanding of network
activity as a whole. The research as a whole demonstrates, via in-depth examples and
descriptions, the potential benefits of both relational schemata and GOPHER in intrusion

detection.

ton 1.0

f Code Vers

1T O,

Appendix A. Matr

ST=TTIT 0000 T 0268€5.2502 €2 T9LT 2Z000TO0TOTOT ¥000TOOTOTOT OT
¥T=0TTT 00T 000268€5.2502 €2 T9LT 2Z000TO0TOTOT ¥000TOOTOTOT §
€T =T0TT
1T =TI0T 0000 T 0268€5.2502 €2 T9LT 2000TO0TOTOT ¥000TOOTOTOT 8
0T =0TOT 00T 00 0268€5.250Z €2 T9LT 2000TO0TOTOT ¥000TOOTOTOT §
6=T00T ‘sieoed wbned
L =TT10 €=TI T=11
9=0T10 z=01 8=0T
§=T010 T=T0 =10
sanfe a|qISsod auIN uwnjo) Moy [8'v] [9'7] 1e Tenba jou
(0T) NIZ
(6) NAS
(8) LsH
(1) HSNd
(9) MoV
(G) #baSIXaNdOL
6'ST'OT'9'TT'€T'S 'L () #b39SdOL
9 'vT'L'€T'ST 6 'TT 9'yT'ST'ET'6 (€) HodisadoL
OT ‘PT 'TT'€T'ST'S ‘L 0T ‘PT 'ST ‘€T ‘S 6'ST ‘9 (2) H0d2ISdOL
9'yT 'L '€T'ST'6 ‘TT O0T'S'9'vYT'ST'ET'6|] 96'€TTT'PT'L'S'STOT[] S'OTPT'TT'€T‘2'9'GT’6 (1) 1sadl
0T ‘pT 'TT ‘€T 'ST ‘G ‘L 9'6 ‘0T 'YT'ST'ET'S[OT'S'€T'2'¥PT'TT'6'ST'9l 6'9'vT'L'€T'TT'0T'ST'S 6'ST ‘9 (0) 215dI
(G) #basxaNdO L (v) #b3SdO L (€) WodiIsadoL (2) ModaISdOL (1) 1sadl (0) 215dI
Yoeny sAeiayouor eyeq isal
(0T) NI4
(6) NAS
(8) LSY
(1) HSNd
(9) Mov
(G) #basSIXeNdO L
¥T','9 0T ‘€T 'ST'6 'S ‘1T () #basSdO L

L'9'vT 0T 'ST'S'6 ‘€T ‘1T

L'6'vT'9'ST'S'ET ‘0T

(€) HodisadoL

TT'OT PT'9'ST'6'S'ET ‘L

TT'20T vT'G'ST'6 ‘€T ‘9

OT PT'TT'€T 2L 'G'6'ST'9

(2) M0d2ISdOL

TT'0T '¥T'9'ST'6'G'ET ‘L

S'PT'OT'ST'6'€T'9

0T 'L'TT '¥T'€T'G'6'ST ‘9

TT'L'9'vT'€T'6 '0T 'ST 'S

(1) 3sadl

2'9'¥T 0T 'ST'S'6 ‘€T ‘1T

6'PT'9 ‘ST 'G ‘€T '0T

TT'L'9 VT ‘€T '6 'S 'ST ‘0T

0T 'L 'TT '¥T '€T'G'9 ‘ST '6

0T 'S'€T 'L 'TT '¥1'9'ST'6

(0) 215dI

(G) #basxaNdO L

(v) #basdO L

(€) HodisadoL

(2) ModaISdOL

(1) 3sadl

(0) 215dI

s1exoed 00000T dUO 99 Aepsan] si eleq Bulurel]

Less-than, Greater-than, and Equal Relational Matrix and the Joncheray

Figure A.1

MitM Attack

A-1

ueyr-ia1ealb 1Sy ‘lenba #basdol = v1 (8'v)
ueyl-ssa| MOV ‘fenba #besdOL = €T (9'1)

(0T) NI

¥T 6 ‘€T ‘L ‘ST 'TT (6) NAS

v1'€T ‘TT 'L 'ST TT'6 ‘€T 'L 'ST'9 'vT (8) 1Sd

¥T'6 ‘€T ‘1T ‘L ‘ST 6 ‘TT ‘€T ‘L ‘ST ‘9 '¥T $T 'TT ‘6 ‘€T ‘L ‘ST (1) HSNd

vT'€TL‘TT'ST| 9°2'S‘€T'6 ‘ST 'TT ‘0T 'vT ,'9'vT ‘TT '6 'GT / 'vT ‘0T ‘TT ‘€T 'ST (9) MOV
¥1'6 ‘€T ‘TT 'L ‘ST 6'TT ‘€T ‘L 'ST'9 '¥T ¥T ‘TT '6 ‘€T 'L 'GT 0T ‘G ‘ST €T 'TT ‘0T '¥T ‘L ‘ST| () #baSxaNdDL

€T'9'0T'G'6 ‘TT'ST 'L

TT'6'ST'L'9

(PT)OT 'TT'ST'S 'L

6'ST'0T "9 TT'€T'S'.

S(ETY6 'TT ‘0T 'ST'9 'L

() #basSdOoL

0T ‘vT'9'S'6 ‘€T 'L 'ST 'TT

¥T 'L 'G'€T 'ST 'TT ‘0T

9 'FT 'L '€T 'ST '6 1T

9'vT‘L'€T'ST'6 'TT

€16 '/ 'vT 'ST '0T 'T1

(€) Hod1IsadoL

9'vT'0T'6'S ‘€T ‘TT ‘ST 'L

vT‘TT'6 ‘€T 'ST'L'9

OT ‘YT 'TT'€T'ST 'S ‘L

OT ‘YT 'TT'€T'ST'S ‘L

€T '6'TT 'PT 'ST'9 ‘L

(Z) ModaISdOL

9'vT ‘0T ‘6 ‘€T 'S 'L ‘ST 'TT ¥T ‘L 'S ‘€T ‘ST ‘1T '0T 9'vT 'L ‘€T 'ST'6 'TT 9'vT ‘L '€T'ST ‘6 'TT €1°'G 'L 'vT ‘ST ‘0T ‘1T (1) 15adl
0T ‘¥T‘9'G ‘€T ‘6 'TT ‘ST ‘L ¥T'TT'6 ‘€T 'ST'L'9 0T ‘¥T ‘TT ‘€T 'ST'S 'L 0T ‘vT ‘TT ‘€T 'ST'S ‘L €T'6 'TT '¥T 'ST'9 ‘L (0) 218dlI
(01T) NI4 (6) NAS (8) LS¥ (2) HSNd (9) Mov
(0T) NI4
6'9'vT 'L '€T'ST'TT (6) NAS
6 TT ‘9L ‘¥T ‘€T 'ST 97T '6 ‘L ‘€T ‘ST '¥T (8) LSy
0T ‘S '9 ‘€T '¥T ‘6 'TT ‘L 'ST €16 'TT'ST L9 'vT 9'vT ‘€T '6 'TT 'L ‘ST (1) HSNd
S‘L0T¥T'TT'€T'ST| OT'S'TT'9 'L ‘€T '6 ‘ST 'v1 €T°'9 '¥1'6 'L 'TT 'ST S, 'TT ‘0T '¥T ‘€T ‘ST (9) MoV
0T ‘S '9 ‘€T '¥T'6 'TT ‘L 'ST €T°'6 'TT'ST'L'9 'vT 9vT '€T'6 'TT ‘L 'ST 6'9°L'TT '0T 'S ‘ST S ‘€T 'vT 0T ‘TT ‘2 ‘ST] () #b8aSIxeNdO L

T €T '9'0T '6'G'STL'TT

S'6‘TT'ST'L'9'0T

90T ‘€T '6'S'ST'L'TT

PT'9°'L'0T'€T'ST'6'G'TT

¥T'6'9'G'0T ‘ST 'L TT

() #basSdO L

9 'PT '0T '6 ‘G ‘€T 'L ‘ST 'TT

€T'9'S'6 'TT 'ST 'L ‘vT ‘0T

0T 'S'9 '¥T '6 ‘€T 'L 'ST'TT

9'vT 'L '0T 'ST ‘G '6 ‘€T ‘TT

6 'PT '€T 'S '9 ‘0T ‘L ‘ST 'TT

(€) wodisadoL

0T '#T '9'G ‘6 ‘€T ‘TT ‘ST 'L

€T 0T '6'S 'L 'ST 'TT '¥T'9

¥T'6 ‘0T '9'G ‘€T ‘TT ‘ST 'L

OT '#T 'TT '9 'ST ‘6 ‘G ‘€T 'L

T ‘0T 'G ‘€T '6 ‘9 ‘TT ‘ST 2

(2) M0doISdOL

0T '#T '9'G ‘6 ‘€T ‘TT ‘ST 'L

ET 0T '6'S 'L 'ST 'TT '¥T'9

¥T'9'6 ‘0T ‘G ‘€T ‘TT ‘ST 'L

0T '#T 'TT '9 ‘ST ‘6 ‘G ‘€T 'L

S'0T 'PT ‘€T '6 ‘9 ‘TT ‘ST 2

(1) 15adl

9'PT '0T '6 ‘G ‘€T 'L ‘ST 'TT

€T'9'S'6 'TT 'ST 'L ‘vT ‘0T

0T 'S'9 '¥T '6 ‘€T 'L 'ST'TT

9'vT 'L '0T 'ST'G'6 ‘€T ‘TT

6'0 'vT ‘€T 'G 0T 'L ‘ST 'TT

(0) 218dI

(01) NI4

(6) NAS

(8) LSY

(1) HSNd

(9) Mov

A-2

Appendiz B. Matrix of Code Version 2.0

e s s s s s s s e s s s s s e s s s s s s s s s s

[eT ‘ST ‘p1]
[eT ‘ST ‘v1]
[eT ‘ST ‘vl
[eT ‘ST ‘b1l
[TT'oT‘2's ‘6 ‘€T '9 ‘ST ‘¥l
[2'eT ‘1T 'S 0T ‘6 '¥T ‘ST ‘9]
[ST'€T 'vT ‘2 ‘6 '9 'S ‘TT ‘0Tl

[sT]
[sT]
[sT]
[tT 2 'sT]
[tT'sT /]
[sT 2 'TT]

[gT]
[sT]
[tT 2 g1l
[tT'sT /]
[ST 2 1Tl

oygel} dNDI pue ‘dan ‘dO. Jo sisxoed Y00z dpisulfepsan uo paurel |
ysiuly 0} SPU0I3S KEYZ 00} s}axoed 000002

s s s s s s s s s s s s s s e s s e s s e s s e s s e s s |

[sT]
[tt2's1]l [tT°2'ST]
[tr'st 2] [tT'sT
[sT°2'tT]l [ST°2'TT]

o6 ‘vT‘OT ‘€T ‘TT ‘G ‘ST ‘2]

[ST0T'9'G ', '6 'TT]

OoOOoOoOOoOoOoOOoOoOoO o oo oo ooOoOoOoOooOoooooooooooooocd

[T ¥T 0T 'S ‘L ‘9 ‘1T ‘6l

yBUTdINDI

8dALdINDI

3poOdNDI

ybuldan

Hodisdddan

Hodaisddn

YBuTIpIHAO L

NId

NAS

1S4

HSNd

MOV

odn

OHO3

dMO

#baSIXaNdO L

#basSdo L

HodisddoLl

HO42ISdOL

yibuTieoedeloL

OVINLSd

1sddl

OVINDIS

2ISdl

yibumaxoedd|

UIBUIpIHdI

19syobelq

Bej4pasnun

Bei4alon

Beidqiuoq

ILLdl

didl

O|ld|N|M|T V][O~ |o |

yibupexoedd|

UIBUTpIHdI

19s0bei4

Bej4pasnun

Beiq4alon

Beiqiuoq

JLLdl

9

S

14

€

Example 2-D Matrix

Figure B.1
Trained on 200K TCP, UDP, and ICMP packets from Tuesday inside data

B-1

CcCooooooooooooooooooo

[TT'eT2'6'9 'S ‘¥T ‘ST ‘0Tl
[eT ‘2 TT 'S '¥T '0T '6 ‘ST ‘9]
[2'€T'TT'S'0T '6 '¥T ‘ST ‘9]
[eT‘ST2'6 ‘YT 'S ‘9 ‘TT ‘OT]
[2 1T ‘5 ‘sT ‘0Tl

[eT ‘sT ‘vl

[eT ‘'sT ‘vl

[eT ‘ST ‘vT]

[eT ‘ST ‘vT]

[TT‘0T‘s'6 ‘L ‘€T ‘9 ‘ST ‘¥T]
[2°€T‘TT 'S 0T ‘6 ‘¥T ‘ST ‘9]
[ST'¥T‘2'6'9'S ‘TT ‘0Tl

[5'0T 'TT'6 'L 'ST ‘9]
[0T‘TT'¥T ‘€T 'L 'S ‘6 ‘ST ‘9l
[eT'¥T‘9'6 ‘ST ‘'S ‘L ‘TT ‘0Tl
[PT ‘2 '€T'9 ‘6 'S ‘TT ‘ST ‘0TI

[eT ‘a1 'vT]

[eT ‘ST 'vT]

[eT ‘ST 'v1]

[eT ‘ST 'vT]

[0T'S'TT ‘6 ‘L ‘€T ‘9 ‘ST ‘¥Tl
[PT 'OT ‘TT ‘€T ‘2 'S ‘6 ‘ST ‘9l
[pT ‘€T '9 ‘6 ‘2 'S ‘TT ‘0TI

OoOOooOooOooooOooOooOooOooOoOoOoO o oo ooooood

[26'TT'9'PT 'OT ‘€T ‘ST ‘gl
[€T ‘¥T ‘2 ‘0T ‘ST ‘9 ‘G ‘TT ‘6]
[2 €T ‘PT ‘G ‘TT ‘0T ‘9 ‘ST ‘6]
[pT ‘sT ‘€Tl

[pT ‘sT ‘€Tl

[pT ‘ST ‘€Tl

[pT ‘ST ‘€Tl

[6TT ‘90T ‘L ‘vT 'S ‘ST ‘€T]
[26'TT'9'PT ‘OT ‘€T ‘ST ‘gl
[ET ‘¥T ‘0T ‘2 ‘G '9 'TT ‘6l

[S°0T ‘ST '9 'L ‘TT ‘6]

[€T ‘2 ‘YT 'S 0T ‘9 ‘TT ‘ST ‘6]
[vT ‘st ‘€Tl

[rT ‘st ‘€Tl

[vT ‘st ‘€Tl

[vT ‘st ‘€Tl

[6'9°TT ‘0T ‘2 ‘¥T ‘G ‘ST ‘€T]
[ET ‘YT ‘9 'TT ‘6 ‘2 ‘0T ‘ST ‘gl
[ET '¥T ‘0T 'S ‘2 ‘9 ‘TT ‘6l

[ST‘2'€T'9‘TT ‘G ‘6 ‘¥T 'OT
[ST €T 'vT

[ST €T 'vT

[ST'eT 'vT

[ST'eT 'vT

[TT'OT ‘6 ‘L ‘ST ‘G ‘9 ‘€T ‘¥T
[TT'2°0T 'S 'ST ‘6 ‘€T ‘¥T ‘9
[PT ‘€T ‘TT'9 ‘L 'S ‘6 ‘OT

yBUTdNDI

8dALdNDI

9POOdNDI

ybuidan

Hodisaddn

HodaIsddn

YBuTpIHAOL

NI

NAS

1Sd

HSNd

MOV

odn

OHO3

dMD

#bagIXeNdOL

#basdoL

HodisadoL

10d2SdOL

ybumiaxoedeiol

OVILSd

sdadl

OVINDIS

21Sdl

ybumayoedd|

yibupIHdI

19sy0bel4

Be|4pasnun

Bei4a10N

Beiqiuoqg

ILLdl

didl

O|ld|N|M|T|w]|Oo|~|o|o

ybumiaxoedeioL

OVILSd

sadl

OVINDIS

45

T

0T

B-2

0 0 I 1} 0 I} ybu1dnoIfTe
0 1} I 1} 1} I} adA1dNDI|0E
0 1} I 1} 1 1] 8po0dNDI|62
1} 1} I I} 1 1] ybuldan|sez
1} 1} I I} 1 1} yodisadan|.zz
1} 0 I 1} 0 I} Hodaisdan|oz
1} 0 I 1} 1 I} ybupiHdOL|S2
0 1} I 1} 1} I} NEl 4
1} 1} I 1} 1 1} NAS|€Z
1} 0 I I} 1 1} 1|2z
1} 1} I I} 1 1} HSNd|T12
0 0 I 1} 0 1} Mov/|oz
0 1} I 1} 0 1} odn|6t
1} 1} I 1} 1} 1} OHO3|8T
[sT] 1} I 1} 1} 1} dMD|/T
[trz'st] [rT°2'sT] I 1} 1 1} #basIxeNdO 1|91
[st'rT 2] [ST'tT'2] [PT'6'ST'Q'€T'OT ‘G 'TT ‘Ll 1} 1} 1} #b9SdOL|ST
[tttz [tT'sT2] [6°9PT ‘€T ‘0T ‘S ‘TT ‘ST ‘L] [6 9 'PT ‘ST ‘0T ‘€T ‘g) 0 I} UodisadOL|vT
[z'gT'tt] [2'st'tT] [SOT‘PT'€T‘9'6 L'ST'TT] [TT‘2°0T ‘PT'S'ST'9 ‘€T ‘6l [S'OT ‘#T ‘TT ‘€T ‘L ‘9 ‘ST ‘6] I} U0d2ISHOL|ET
[triz'st] [rT'2'gT] [pr'o‘eT'6‘oT's'sT] [tT'st'9‘2'6'0T'S'PT'eTl [9'6°2'TT'OT'S¥T'ST €Tl [S°OT ‘2 ‘TT ‘6 ‘9 ‘€T ‘ST ‘vTI[wbumnaoedeiol |zt
[tr'gr2] [tT'sT2] [6°9'%T ‘€T 0T ‘G 'TT ‘ST ‘Ll [Pr'9'6'sT'oT'eT'a]l [TT'2'vT'eT'9'6‘0T'GT'Gl [TT'Z'PT ‘€T 'S ‘OT ‘6 ‘ST ‘9] OVINLSA|TT
[2'sT'tT] [2'sT'Tt] [S'OT ‘#T'€T‘9'6 'L ‘ST 'TT] [otr's'vr'st'o'er'sl [S'OT'TT'2'vT'€T'9'GT'6l [TT'L'9'6'¥T ‘€T 'S ‘ST ‘0Tl 1sad1|oT
[£'gT't1] [2'sT Tl [S°OT ‘T '€T‘9'6 'L ‘ST 'TT] [PToT's'sT'9'eT'6] [TT'2'vT'€T'OT'S'9'GT'6l [TT'L'PT'€T'6'9 'S ‘ST ‘0Tl ovnaIs|e
[trigr2] [tT'sT2] [6°9'PT ‘€T ‘0T ‘S ‘TT ‘ST ‘L] [o'6'pT'sT'OT'eT'a] [TT'2'9'6 ‘vT ‘eT‘OT‘ST'S] [S°OT ‘2 ‘TT ‘¥T ‘€T ‘6 ‘ST ‘9] 21sdl|8
[ztT'sT] [2'tT'sT] [PT2'9'€T'6'0T'S'TT'GT] [TT'ST¥T‘9‘2's‘'0T‘6'€T] [PT'Q9'ST'6°L'G'OT‘TT €Tl [ET 'S ‘ST ‘OT ‘2 ‘9 ‘6 ‘TT ‘¥Tl ybumaxoeddl|.
[sT] [sT] [pT ‘€T ‘STl [sT ‘T ‘€Tl [vT ‘st ‘€Tl [eT ‘aT 'vT] ybupiHdI|9
[sT] [sT] [pT ‘€T STl [sT ‘vT ‘€Tl [rT ‘st ‘€Tl [eT ‘ST 'vT] 19syobeld|s
[sT] [sT] [yT ‘€T ‘STl [sT T ‘€Tl [vT ‘st ‘€Tl [eT ‘ST 'vT] Be|4pasnun|y
[sT] [sT] b1 ‘€T ‘STl [sT 'vT 'eT] [vT ‘st ‘€Tl [eT ‘ST ‘vl Beiqai0 e
[trezst] [tT'z'stl [o‘6's‘TT'OTvT'eT'2'sT]l [2'TTOT'6'ST'¥T'9's'eT] [S'OT'6‘TT'STYT‘9‘2'e€T] [9°'6 ‘0T ‘TT ‘ST ‘€T 'S ‘L ‘vTl Beifuoqlz
[2gTtT] [2'sT'TT] [S°OT ‘PT ‘€T ‘96 ‘L ‘ST 'TT] [oT'vT'sT'9'eT'6] [S'OT‘Z‘TTvT'€T'9'GT'6l [2‘TT'6'9 'PT ‘€T 'S ‘ST ‘0Tl L1dI|T
[sT 't 2] [sT'tT 2] [eT 'vT '6 ‘9 ‘0T ‘S ‘TT '/l [PT ‘€T ‘TT ‘6 ‘9 ‘2 ‘0T ‘sl [ET '¥T 'TT'6 '9 ‘0T ‘2 ‘sl [PT ‘€T ‘TT ‘0T 'S ‘6 ‘L ‘9] aidi|o
OHO3 dMO #baSIXaNdOL #bdSdO L HodisadoL U0dIISHOL
8T /T 9T ST [€T

B-3

1} 0 1} 0 I} ybu1dnoIfTe
1} 1 1} 1} I} adA1dNDI|0E
1} 1 1} 1 1] 8po0dNDI|62
1} 1 1} 1 1] ybuldan|sez
I} 1 1} 1 1} yodisadan|.zz
1} 0 0 0 I} Hodaisdan|oz
1} 0 1} 1 I} ybupiHdOL|S2
1} 1 1} 1} I} NEl 4
1} 1 1} 1} 1} NAS|€Z
[9'TT'6 'L €T ‘T ‘STl 1} 1} 1} 1} 1SY|ze
[eT'6'9'TT 'L '¥T ‘STl [9‘vT ‘€T ‘6 ‘TT ‘L 'ST] 1} 1} 1} HSNd|T12
[0T ‘S ‘TT ‘€T ‘6 ‘ST ‘vT ‘9 ‘/] [eT ‘9 '¥T ‘6 ‘TT ‘ST 2] [tT ‘0T ‘s ‘PT ‘€T ‘ST ‘2 0 1} Mov/|oz
[Tt 2 et 'vT ‘1] [t 2 'vT'eT ‘Tl [TT'oT‘2's ‘vT ‘€T ‘STl [tz 'vT'sT ‘€Tl I} 94N|6T
[eT ‘T ‘1] [pT ‘€T ‘5Tl [pT ‘€T ‘STl [vT ‘st ‘€Tl [T ‘€T ‘STl OHO3|8T
[eT ‘T ‘1] 7T ‘€T ‘STl [T ‘€T ‘STl [vT ‘st ‘€Tl [T ‘€T ‘STl dMO|LT
[eT'6'9'TT "2 '¥T ‘STl [9‘vT ‘€T ‘6 ‘TT ‘L 'ST] [FT'6'9 'L 'TT 0T 'S ‘ST] [PT'OT 'S ‘TT ‘2 ‘ST ‘€Tl [9'0T ‘6 ‘G 'TT ‘L 'ST] #baSIXaNdOL|9T
[6‘G'ST'TT 0T ‘9 2] [o'oTr'er'6's'sT'TT 2] [¥T'6'ST'Q9'€T 0T 'S 'TT [¥T '6 ‘0T '9 ‘ST ‘L ‘TT ‘gl [o'0T ‘65 ST ‘TT ‘L] #b9SdOL|ST
['6'€T'9'STTTOT'PT ‘2] [0T'S'9'PT'6'€T‘TT'ST 2] [6'9“bT €T 'OT 'S ‘TT'ST 2] [6'9°‘OT VT ‘ST ‘2 ‘TT ‘€T ‘gl [PT ‘0T ‘s ‘TT ‘ST ‘2] UodisadOL|vT
[6'eT‘'s'or'sT'2'9vT TT] [¥T'6‘'0T'9'G'eT‘2'ST'TT] [S'OT‘PT'€T'9'6 2 'GT ‘TT] [¥T'OT'G'Q ‘ST ‘TT ‘L ‘€T ‘6l [PT ‘9 ‘€T ‘6 ‘L ‘ST ‘TT] U0d2ISHOL|ET
[eT'6'9 ‘TT ‘2 ‘¥T ‘STl [o'vTeT'6‘TT‘2L'ST] [6'€T ‘9 '¥T ‘L ‘TT ‘0T 'S ‘STl [PT ‘0T ‘S ‘TT ‘2 ‘ST ‘€Tl [9 ‘vT ‘€T ‘TT ‘2 ‘sTl| wbumexoedielol |zT
['ser'o'strT'oT'¥T 2] [@'6'0T'vT's'eT‘TT'ST 2] [6'9‘PT'eT‘OT'S‘TT'ST 2] [OT'Q‘¥T'6'GT ‘L ‘TT ‘€T ‘gl [otvT's'eT ‘1T ‘ST ‘2] OVINLSA|TT
[6's'eTror'ST'L'9%T TT] [¥T'9'6'0T'S'eT'2'ST'TT] [S'OT'PT'€T'9'6'2'GST'TT] [S'OT'9'PT'ST'TT'2Z'€T'6l [¥T'9'0T '6'G 'L ‘ST 'TT] 1sad1|oT
['6'eT'OoT'ST'L'9YT 'TT] [0T'S'9'¥T'6'€T'L'ST'TT] [S'OT'PT'€T'9'6 'L 'GT'TT] [9'OT ‘¥T'G ‘ST ‘TT ‘L ‘€T ‘6l [o'vT'6'€T 'L 'ST 'TT] JVINDIS|6
[s'6'€T'9'STTTOT'PT ‘2] [OT'S'9'PT'6'€T‘TT'ST 2] [6'9“bT €T 'OT'S'TT'ST 2] [6'9°OT ‘¥T ‘ST ‘2 ‘TT ‘€T ‘gl [PT ‘0T ‘s ‘TT ‘ST ‘2] 21sdl|8
[eT‘¥T ‘S'6 ‘9 ‘TT ‘2 ‘0T ‘STl [pr'9'eT'6‘2'TT'ST] [PT'6‘€T'9‘2'0T'S'TT'ST] [PT‘'9'OT'S'ST'ZTT'6 €Tl [9°0T ‘6 ‘€T ‘S ‘L ‘TT ‘STl ybumaxoeddl|.
[eT ‘T ‘Tl [pT ‘€T ‘5Tl [T ‘€T ‘STl [vT ‘st ‘€Tl [T ‘€T ‘STl ybupiHdI|9
[eT ‘T ‘aT] 7T ‘€T ‘STl [T ‘€T ‘STl [vT ‘st ‘€Tl [T ‘€T ‘STl 19syobeld|s
[eT ‘T ‘sT] 7T ‘€T STl [yt ‘€T ‘STl [vT ‘st ‘€Tl [T ‘€T ‘STl Be|4pasnun|y
[eT ‘T ‘Tl [¥T ‘€T ‘STl [yt ‘€T ‘STl [vT ‘st ‘€Tl [T ‘€T ‘STl Beiqai0 e
[otr's‘6‘eT'PT'2'TT'9'ST] [9'6 0T PT'S'eT‘TT L 'ST] [9'6°G‘TT'OT ‘YT ‘€T ‘2 ‘STl [0T ‘9 ‘¥T'6 ‘TT ‘ST ‘L ‘S ‘€Tl [pT €T ‘TT ‘2 'ST] Beifuoqlz
['ceTror'sT'2'9vT ‘TT] [9'6 0T PT'S'€T‘2'ST'TT] [S'OT‘PT'€T'9'6 2 'GT‘TT] [S5°OT ‘9 ‘¥T ‘ST ‘TT ‘L ‘€T ‘6] [ovT ‘6 ‘€T ‘2 ‘ST ‘TT] L1dI|T
[ST'6 ‘S ‘TT ‘0T ‘9 /] [6'sT'0T'9's‘TT 2] [ET'ST'¥T '6'9 ‘0T 'S ‘TT ‘2l [ST ‘6 ‘0T ‘9 ‘2 ‘TT ‘q] [9'6's'ST 'TT ‘2] aidi|o

NAS 1S4 HSNd MOV 23N

€2 [44 12 0z 6T

B-4

0 I 1} 0 I} ybul1dnolfte
1} I 1} 1} I} adA1dNDI|0E
1} I 1} 1 1 8po0dNDI|62
1} I I} 1 1] ybuldan|sez
[tTt‘2'6'9°'0T 'S ‘€T ‘ST ‘¥l I I} 1 1} uodisadan|zz
[2'TT6'9'0T‘G‘€T ‘ST ‘¥T] [¥T 'L ‘€T 'TT ‘6 ‘90T ‘S ‘STl 1} 0 I} uodaisdan|oz
0 I 1} 1 I} ybupiHdOL|S2
1} I I} [6'€T'9 ‘TT ‘2 'vT ‘a1l I} NId|ve
1} I 1} [eT ‘2 TT'¥T ‘G ‘0T ‘Tl [9°2'6'¥T ‘€T 'TT 'ST] NAS|ez
0 I I} [0'TT "6 ‘L €T '¥T ‘Tl [6‘TT'9 'L VT ‘€T 'ST] 1Sd|zz
1} I I} [et'6'9'TT2'¥T'ST] [0T 'S '9Q ‘€T '¥T ‘6 'TT ‘L ‘STl HsNd|tz
1} i I [0T'S‘TT ‘€T ‘6 ‘ST ‘T 9 ‘.l [5‘0T ‘TT ‘pT ‘€T ‘ST ‘2] MOov|oz
1} I 0 [tT 2 'et v ‘a1l [Ttz 'pT ‘€T ‘STl oun|et
1} I 1} [eT 'vT ‘a1l [T ‘€T ‘STl OHO3|sT
1} I 1} [eT 'vT ‘STl [T ‘€T ‘STl dMO|LT
0 I 1} [et'6'9TT2'¥T'ST] [0T 'S'Q ‘€T ‘¥T ‘6 ‘'TT ‘L ‘STl #baSIXeNdO 19T
1} {1 I} [6'G'sT‘TT ‘0T ‘9 /] [eT'9 0T '6 'S ‘ST 'TT ‘2] #basdo1|sT
0 I I I[s‘e‘cr‘o'sT'TT'OTvT 2] [9‘¥T ‘0T ‘6 'S ‘€T ‘TT ‘ST ‘L] Uo1ISadoL{rt
1} I I [e‘et's‘or'sT2'9'vT ‘Tl [0OT ‘¥T‘9°G ‘6 ‘€T ‘L ‘ST ‘TT] 10d2ISHOL[ET
['sTot] [pT'eTr'9'6'0T's‘2'ST TT] [ET ‘¥T'9 ‘60T ‘G 2 ‘ST ‘TTl [et'6'9TT2'vT ‘STl [0T 'S'9 ‘PT ‘€T ‘6 ‘TT ‘L ‘ST]| yibumexdedielol |zt
[et'z'tt'9'6'vT's'sT'OT] [pT'eTor's'9'6'2'sT'TTl [eT'vT'OT'S'9'6'2'GT'TT] [6's‘eT'9'sT'TT'OT ‘vT 2l [9'PT ‘0T '6'G ‘€T ‘TT 'ST '/l OVWNLSA|TT
[etrr'2'0r's'vT'6'sT'9] [pT'eT'6'9'0T'S'TT'ST 2] [eT'vT'6'9'or's'TT'sT2]l [6'G'eT‘OT'ST'2'9'PT'TTl [OT '¥T'9'G'6 ‘€T ‘L ‘ST ‘TTl 1sadi|ot
[ertT'2'0t'svT'6'sT'9l [pT'oT'9's'6'eT‘TT'GT ‘2l [PT'OT'9'S'6 ‘€T 'TT'ST 2] [S'6 ‘€T ‘0T ‘ST L9 vT ‘TTl [OT ‘¥T'9'S ‘6 ‘€T ‘L ‘ST ‘TT] ovnaIs|e
[et'sT'2'9'6vT'sTTOT] [T ‘PT9'0OT‘6'S'ST LTIl [eT‘vT'9‘0T'6'G'ST‘Z'TT] [S'6‘€T‘Q'ST'TT'OT ‘vT 2l [9‘PT ‘0T ‘6°'G ‘€T ‘TT ‘ST /] 21sdl|8
[s'sTot] [pT'eT'9'6'0T's2'ST'TT] [eT'¥T'9'6'0T‘'S‘2'ST'TT] [ET'4T'S'6°'9‘TT ‘20T ‘STl [0T‘S‘9 ‘€T ‘¥T ‘6 ‘L ‘TT ‘Tl ybumaxoeddl|.
[eT ‘sT ‘vl [pT ‘€T ‘STl [pT ‘€T ‘STl [eT 'vT ‘a1l [T ‘€T ‘STl ybupiHdI|9
[eT ‘'sT ‘vl [pT ‘€T STl [pT ‘€T ‘STl [eT 'vT ‘a1l [T ‘€T ‘STl j1asyobeld|s
[eT ‘ST ‘¥T] [pT ‘€T ‘STl [pT ‘€T ‘STl [eT 'vT ‘g1l [T ‘€T ‘STl Be|4pasnun|y
[eT ‘ST ‘vT] [pT ‘€T ‘sT] [rT ‘€T ‘STl [eT 'vT ‘STl [pT ‘€T ‘STl Beiqai0 e
[S0T'9'6‘TT L'eT'ST'YT] [S'OT'9'PT ‘6 'TT €T 2L'ST] [S'OT'9vT‘6‘TT'eT‘2'ST] [0T'S'6‘€T‘¥T ‘2 TT'9'GTl [0T 'S VT ‘€T ‘TT ‘9 ‘6 ‘L ‘STl Beifuoqlz
[ettr'2'0r's'vT'6'sT9l [eT‘pT9'0T'6's‘TT'ST 2] [eT'vT'9'0T'6's‘TT'sT2] [6'S‘eT‘OT'ST‘2'9'PT‘TTl [OT ‘¥T'9‘G'6 ‘€T ‘L ‘ST ‘TTl L1dI|T
[pT‘2'6'9 'S ‘1T ‘0Tl [FT'9'0T'6'G ‘L 'TT] [eT'9'0T'6's ‘L ‘TT] [ST'6 'S ‘TT ‘0T ‘9 /] [ST'9 ‘0T ‘6 ‘G ‘TT /] aidi|o
wbuidan uodisadan U0doISdAN YBUTPIHLOL NI
8¢ 12 9z 52 24

B-5

I} 1} 1} ybu1dnoIfTe
[ot ‘92 ‘st 'T1] 1} I} adA1dNDI|0E
[ot ‘gT] [oT ‘6 ‘€T ‘ST ‘¥l 1 3po0dINDI|62
I 1} 1] ybuldan|sez
I} 1} 1} yodisadan|.zz
I} 1} I} Hodaisdan|oz
I} 1} 1} ybupiHdOL|S2
I} 1} I} NEl 4
I} 1} 1} NAS|€Z
I 1} 1] 1|2z
I} 1} 1] HSNd|T12
1} 0 1} Mov/|oz

I} 1} 1} odn|6T

I} 1} 1} OHO3|8T

I} 1} 1} dMD|/T

I 1} I} #baSIXaNdOL|9T

I} 1} 1] #b9SdOL|ST

I} 0 I} uodiIsadoL{rt

I 1} I} 10d2ISHOL[ET

[ot‘sT] [oT ‘6 ‘€T ‘ST ‘¥l [oT ‘gT]| wbupexdedelol |zT
[o'vr2'sr'tt]l [er'9‘s‘st'ot]l [9'vT 'L ST TT] OVINLSA|TT
[ot ‘1T 5T 2] [5'0T ‘6 ‘ST ‘9] [ot ‘TT 5T 2] 1sad1|oT
[oT ‘9 ‘TT ‘ST ‘2] [s‘oT ‘6 ‘T ‘9] [0T ‘9 ‘TT ‘ST ‘/] ovnaIs|e
[otT ‘2 ‘st ‘1Tl [6 ‘9 ‘5 ‘ST ‘0Tl [oT ‘2 ‘st ‘T71] 21sdI|8
[ot‘sT] [OT ‘6 ‘€T ‘ST ‘¥l [ot ‘g1l ybumaxoeddl|.

[pT ‘Tl [eT ‘'sT ‘vl [pT ‘gT] ybupiHdI|9

[vT ‘Tl [eT ‘'sT ‘vl [vT ‘Tl 19syobeld|s

[vT ‘a1l [eT ‘ST ‘vT] [vT ‘a1l Bejgpasnun|vy

[vT ‘5Tl [eT ‘ST ‘¥T] [vT ‘5Tl Beiqai0 e

[pT ‘sT] [eT ‘ST ‘vT] [vT ‘Tl Beifuoqlz

[o‘0T ‘2 'sT 'TT] [6'9's‘sT ‘0Tl [9°0T ‘2 ‘ST ‘1Tl JL1difT
[o'sT'2T1] [6'9'PT 'S L ‘OT] [9 5T, 'T1] aidi|o

YBu1dNDI adALdINDI 3poOdINDI

1€

0g

6¢

B-6

Appendixz C. Matriz of Code Version 2.44

U U ybuaieleddnol | wbuatereadinol | ev

U I 2dALdINDI 2dALdINDI 144

I U 3poOdNDI 9pOOdNDI 72

U I [UE] Tul4 or

U I 2uAs Tul4 6€

U I 2isy Tul4 8€

U I 2ysnd Tul4 L€

U I [AEN Tul4 9€

I I [4E] TUAS SE

0 I 2uAs TUAS 7€

0 I sy TUAS €€

I I zusnd TUAS €

0 I PV TUAS 1€

0 0 [UE] ISy 0g

0 0 cuAs ISy 62

0 I sy TSy 8z

0 I zusnd TSy LT

0 I PV Tisy [

I I culy Tysnd [

0 0 S Tysnd ¥z

0 0 a5y Tysnd €2

0 0 zysnd Tysnd &%

0 0 PV Tysnd 12

I I cud RV 0z

I I S RV 6T

I I 218y RV 8T

I 0 zysnd RV LT

I U 2PV RV 9T

U U 2#basSIXNdOL T#b9SIXNJDL | ST

U U 2#hasdoL T#D3SIXNJDL | ¥T

U I 2#baSIXNdDL T#baSdOL €T

U I 2#basdoL T#b3SdOL 2T

I 0 210disadoL THOdISAdoL [TT

I 0 ZHOdAISHOL THOdISadoL | ot

I 0 2H0disadoL THOdISdOL 6

I 0 2HOdAISHOL THOdISHOL 8

I 0 2ISAOVIN TISAQOVIN L

0 I 2ISOVIN TISAOVIN 9

0 I 2ISAOVIN TISOVIN S

I6'9's ‘ot ‘€T "2 'vT ‘T1l I I 22ISOVIN TOISOVIN 7

I5'6 ‘9 ‘0T ‘€T ‘2 'vT ‘T1l [vT 'eT "2 '6 ‘1T '9 'S ‘ST ‘0Tl I I 21sadl Tisadl €

[yT'eT'2'6'9 'TT 'S ‘0T ‘STl Is'6'9 ‘0T ‘2 '€T 'TT '¥1l IS ‘019 '6 ‘2 ‘€T 'TT '¥1l 0 2oisdl Tisadl @

[T1's'0T ‘2 '6 ‘9 ‘STl [6'S'0T'9 ‘TT ‘€T ‘2 '¥1l [6'0'0T 'S ‘TT ‘€T 'L '¥1l [0T 'S ‘€T ‘2 'TT '¥1 '6 '9 ‘STl I 2isadl ToISdI T

[6'S 0T '9 ‘€T 'TT 'p1 ' [TT's ‘2 ‘01 '6 ‘ST ‘0l [0T 'S ‘2 '€T 'TT '¥1 '6 'GT ‘0l [6'9's 0T ‘€T 'TT 'pT ‘2l [S'0T'9 ‘6 ‘T 'TT ‘€T ‘2l I 29ISd| 121Sd 0
2ISAOVIN 22ISOVIN 21sadl 22ISdI 21sadl 20Isdl
TIISOVIN TAISOVIN TIsddl TIsddl T2ISdI T2ISdI

S 2 € Z T 0

Example Beta Crosschecking Matrix

Trained on the First 100K Packets from Tuesday Week One Inside Lincoln Labs Data

Figure C.1

C-1

f Code Version 2.116

1T O

Appendiz D. Matr

i 1 [1 1 i [1 [1 i i i i i i i i UMD oun| 65
[1 [1 [1 1 1 [1 [1 1 I I I I I [l I NI OHO3[85
i 1 [l i i 1 1 i i i i i i i i NAS OHO3[L5
1 i i i i 1 1 i i i [i I I I i 1353y OHO3[95
1 [1 [l 1 [1 [1 [1 [1 [[I I [[l I HSNd| OHO3| s5
1 i i i i 0 1 i [i i i [i i i i MOV OHO3[v5
1 [1 1 1 1 [1 [1 1 I I I I I I I 2un| OHO3| €5
i i [l i [l 1 [1 [l i i i i i i i OHO3 OHO3| 25
1 i i i i 1 1 i [i [i [i I I I I UMD OHO3[15
[1 [1 [l [1 1 [1 [1 1 1 [I [1 [I NI umo| os
1 i i i i 0 1 i [i i i i [i i i NAS UM 6v
1 [1 [l 1 1 [1 [1 1 I I I I I I I 1353y umo| v
1 0 0 1 i 1 1 i i i i i i i i HSNd| umo| v
[1 1 1 1 1 [1 [1 1 i I I I I I I MOV UM or
[1 [1 1 [1 1 [1 [1 1 [1 [[[I [2unN| umo| sv
i i 0 i [i 0 [1 [i i i i I [i i i OHO3 UM v
[1 [1 [l 1 1 [1 [1 1 I [I [l I [l I UMD UM v
i 1 0 i 0 1 1 0 i i i i [i i i #DISIXNAOL #DaSXNdOL| 2v
[1 [1 1 1 1 [1 [1 1 I I I I I I I #baSdOL| #bagIXNdOL| Tv
[1 [1 1 [1 [l [1 [1 [l [[[[[[[#baSIXNdOL| #basdoL| ov
1 i 0 i i 0 1 i i [i i I I i i #D3aSdOL| #basdoL] 6€
[i [i [i 1 1 1 1 1 1 1 1 1 1 1 1 10d1SOdO 1] uodisadoL] 8¢
i 0 i i i 1 1 i i i i i i i i H0dUSIOL| vodisadoL| ze
[i [i 1 1 1 1 1 1 1 1 1 1 1 1 1 10d1SdO] u0daISdoL] o€
1 1 1 1 1 1 1 1 1 1 1 1 1 1 [10dOISAOL] 10d2ISdOL| sE
1 i i i [i 0 [1 [i [i i i I I i i 1SAOVIN 1SAOVIN] vE
[1 [l [l [l 1 [1 [1 1 1 1 I I [[l I ISOVIN 15QDVI] €€
i 0 i i i 1 1 i i i i i i i i 1SAOVIN 2USOVI| 2
[1 1 [l 1 1 [1 [1 1 I I I I I I I QISOVIN USOVI] TE
1 1 i 1 [l 1 1 [l [l i [l [l [l i [l isadl 15adi] oe
1 i i i i 1 1 i [i [i [i I I i i usdl 1sadi] 62
1 1 [l [l 1 [1 [1 1 I [1 [[[1 1sadl 2isdl] 8z
0 0 i i i 1 [1 i i i i i i [i i usdl dusdl| Lz
[i [i 1 1 1 1 1 1 1 1 1 1 1 1 0] wbusmaxoedieiol] WbuaipHI| 92
1 1 [l [l i 1 1 i [l i i i i i pbuaxRoedd yibuapHdI| sz
i i i i i 0 [1 i [i [i I I I I UIBUS1PHAI| uibuapHdI| v2
[i [i 0 1 1 1 1 1 1 1 1 1 1 0] whusmaxedeior| wbuaTiexoedd| €2
1 0 i i i 1 1 i i i i i i i pbuaRoRdd uibuaiioeddi| 22
[i [i 1] 1 1 1 1 1 1 1 1 1 1 WbuapHdI| wbuaTiexoeddi| T2
1 1 [l [l i [[i i [l i i i YIbus ioRd[eI0L yibuapHdI| 02
1 i i i [i [1 [1 [i [i [i [i [i [i i I ibusixoedd| ybuaIpHdI| 6T
[1 [1 [l 1 [l [1 [1 [l [1 [[[[l [Y1BUS1PHd| yibuaipHdI| 8T
1 i i i i 1 [1 i [i i i i [i i i 13530068 1esyobeld| L1
1 1 1 1 i 1 T 1 1 1 1 1 1 1 1 Beipasnun Tsyobed| of |
i 1 i 1 [l [l [l [l i [l i i i i i Gei4a10M 1esyobeld| st
1 i i i i 1 1 i i i I I I I I Beiiuog 1asyobeld| v1
[e1 ST [l 1 1 1 [1 [1 1 [1 [[[[[18sy06el| Bejgpasnun| 1
[T 'sT] 15T] 0 1 1 1 0 1 1 1 1 1 1 1 1 Be|-jpasnun Geigpasnun| 21
[e1 51 [s1] 53] 1 1 1 1 1 1 1 1 1 1 1 1 Geijai0 Gegpasnun| 11
IS ‘ST [2 ST [2ST]] [[l 1 [i i i i i i i i Geiquog BGeigpasnun| ot
[e1's1] Is1] I51] 53] et "s1] 1 1 1 1 1 1 1 1 1 1 19s)j0beld Geija10N] 6
[€1 ‘ST [51] [51] [s1] [€1 ‘5T [C] [1 0 0 0 i i 0 i i Bejjpasnun| Beijaion| 8
[e1 'ST] IsT] 15T] 15T] leT "s1] 1sT] [s1] 1 1 1 1 1 1 1 1 GeiJa10M Geijai0N] £
Is 's1] [°s1] 1 °s1] [°sT] 5 sT] [27s1] [27sT] [°sT] 1 1 1 1 1 1 1 Gei3iuoq Geigai0N] 9
[6 ‘€T 'sT] [T1'sT] [T1'ST] [T1's1] [6 ‘€T 'ST] [IT1 's1] [[6 ‘€T 'ST] i i i [i i i 13sy00el| Besquoa| s
[6 ‘€T 'ST] [t1°sT] [t1°51] [t1°51] [6 ‘€T 'ST] [11 51l [11 51l [t1°51] [6 ‘€T ‘ST] [01 ‘51] I I I I I Be|gpasnun Besjogf v
[6 €T 'sT] [11 ‘51 [11 's1] [11 's1] [6 ‘€T 'ST) 17 ‘51l 11’51 [11's1] [6 ‘€T 'sT) [ot 's1] [ot 'sT] 0 I i i BeijaioN Besjuog| ¢
[€T 'S 'ST] [[[[€1 'S 'ST] [2'ST] [2'ST] [[€1 'S 'ST] [[v7 "L 'ST] [v7 'L 'ST] i i i Geiiuog Beijuoa| z
rsszst] st Lsttgl st rszsttyl st Lostif sttt zst tif oz st tu| b9z st tn| T '9 L 'sT U] 1S 2 ST 11 1 1 LLdI R I
I5°'6 'TT '2] 3] [T1 2] 3] 15611 '] [t '] [TT 2] [T1 /]| 15611 "2 1911 "2 [CRE] O] I5'6 Tt "2f [S'T1'6 'L 9] i aidl| adif o
Beiwoq| Jesyobeld| beijpesnun| beijelon| Beiwoq| 1esyobeld| bepesnun| bGeijelon Beliwoq TesjobeI] Beigposnun| [EE Belwoq TLLdl| aial
Jesjobeld| b n| © n| b n bt n| Beijolon| beijelon| beijelon Beijelon| Belfiuoq Bel-nuoq Beluoq Bel-uoq qLidl| aidl
[€1 [T 0T 6 8 L 9 S 2 € 3 T 0

Example Full Crosschecking Matrix

This is the first two pages of a 16-page 116 by 116 field matrix. The majority of the pages

Figure D.1
were left out to save space

D-1

Usiulj 0} SpU0J3S GZ %00 S1oed ZT|
[1 1 0 0 0 [1 [1 0 0 0 0 0 0 0 0 yibuaTereddwol| yibuaTereddinolf sTT
1 1 i i i 0 0 i i 1 i i i [i i SdALJWOI 3dALWOI| ¥TT
1 1 0 0 1 1 1 0] 1 1 1 1 1 1 2p0ddIOl! 2po0dWoI[ETT
1 i i [l i 1 1 [l [l i [l i i i i ubuaTdan! yibuaidan|zrt
1 1 i i i 1 1 i i 1 1 I I I i 1odisadan uodisadan| trr
[1 [1 [1 [l [1 [1 [1 [l [1 1 1 [[[1 10d2ISdaN vodisadan|ort
1 i i i i 0 1 i i 1 i i i i i Hodisadan 10ddusdan| 60t
1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 042ISdan HodaIsdan| 8ot
1 i 0 0 0 1 1 0 0 i i i i i i UIBUTPNAOL| WBUTPNAOL] 20T
[1 [1 1 1 1 [1 [1 1 1 1 1 I I I i NI NI 90T
[1 [1 [1 1 1 [1 [1 1 [1 [l 1 1 [[[NAS NIdi| S0T
1 1 i 0 i 1 0 0 i 1 1 i i I i 1353y NIdi| 70T
[1 1 [1 [l 1 [1 [1 [l 1 1 1 [[[l I HSNd NIi| €0T
1 i 1 i 1 1 1 i 1 i i i i i i V| NIdi| 20T
[1 1 [1 1 1 [1 [1 1 1 1 1 I I I I OUN [NE]
[1 [1 [1 1 1 [1 [1 1 [1 [l [l [[[[OHO3 NIsi] 00T
[1 1 i 0 i 0 0 0 i 1 1 [i i I [i UMD NI 66
[1 1 [1 [l [l [1 [1 [l 1 [l 1 [[[1 NI NAS| 86
1 1 0 i i [1 [1 i i i i i i i i NAS NAS| 26
[1 [1 [1 1 1 [1 [1 1 1 1 1 1 I I I 1353y NAS| 96
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 HSNd NAS| s6
[1 1 [1 [1 1 [1 [1 [1 1 1 i [i i I i V| NAS| v6
[1 1 [l [l [l [1 [1 [l [l [l 1 1 [I 1 2N NAS| €6
[1 1 0 1 1 1 [1 1 1 i i i i i i OHO3 NAS| 26
[1 1 1 [l 1 [1 [1 [l 1 1 1 I I I I UMD NAS| 16
[l 1 [l i 1 1 1 i 1 i [l i i [l [l NI 13s34| 06
1 1 [1 [1 1 [1 [1 [1 1 1 i [i i I i NAS 13s34] 68
T T T T T T T T T T T T T T T [EEEY 13534 86 |
[1 i 0 i i 0 1 i i i i i i i i HSNd| 13s34| 28
[1 1 [1 [l 1 [1 [1 [l 1 1 1 I I I I OV 13s34| 98
1 1 1 i 1 1 1 i 1 i [l i i i [l ouN 13s34| 58
[1 1 i i i 1 0 i i i i I I I i OHO3 13s34] v8
[1 1 1 [l 1 [1 [1 [l [l [l [l [[[[UMD 1353d| €8
[1 i 0 1 1 [1 [1 1 1 i i i i i i NI Hsnd| z8
[1 1 [1 [l 1 [1 [1 [l 1 1 1 I [I I NAS Hsnd| 18
[l 1 1 [l [l 1 [[l [l i i i i [l i JEEEL] HsNd| 08
1 1 i i i 1 1 i i i [i i I I i HSNd HsNd| 62
[1 1 [1 [l [l [1 [1 [l 1 [l [l 1 [[[V| HsNd| 8.
[1 i i i i 0 0 i i i i i i i i OuN HsNd| 2
[1 1 [1 1 1 [1 [1 1 1 1 1 I I I I OHO3| HsNnd| 94
[1 i 1 i 1 1 1 i 1 i [l [l i i i UMD HsNd| s
1 1 i i i 1 1 i i i 1 I I I i NI Hov| v
[1 1 [l 1 1 [1 [1 1 1 [l 1 1 [[[NAS MOV €L
[1 i 1 i [i 0 1 i i i 1 i i [i i 1353 Mov| 2L
[1 1 1 [l 1 [1 [1 [l 1 1 1 I [I I HSNd Hov| 1L
1 i 1 i i 1 1 i i i [l i i i i 0V| Hov| oL
1 1 [1 1 1 [1 [1 1 1 1 1 I I I i OuN Hov| 69
[1 [1 [1 [l 1 [1 [1 [l [l [l [l 1 [I 1 OHO3 ov| 89
1 1 i [1 [1 [1 [1 [1 1 1 i [i i i [i UMD Hov| 29
[1 [1 [1 [l 1 [1 [1 [l 1 1 1 I I I I NI 2un| 99
1 i 0 i 1 1 1 i 1 i i i i i i NAS oun| s9
[1 [1 [1 1 1 [1 [1 1 1 1 1 i I I i 1353y oun| v9
[1 1 [1 1 1 [1 [1 1 1 [l [1 [[I [HSNd| oun| €9
[1 1 i i i 1 1 i i 1 1 i i i i 0V| oun| 29
[1 1 [1 [l 1 [1 [1 [l [l [l [l [1 I I 2N 2un| 19
[1 i 1 i 1 1 1 i 1 i i i i i i OHO3 oun| 09
Geiwioq| Jesyobeld| beidpesnun| beijelop| Belwoq| esjobeld| bepesnun| bBeiJeloN Belawoq JesjobeI] Bepesnun Beldai0 Beluoq SLLdl| ardl
Jesyobeld| b n| B n| B n| n| beigelon Geijai0N| eidaion] BeideIoN Belgwoq| Belgwoq| Geiiuoa| Belguoq 1Ladl| aidi
[€1 [1T | ot 6 8 | 9 S [€ | Z T 0

D-2

auoq [elle] [tllo]
e [enba jou ale Aay |

E-1

Appendiz E. Matriz of Code Version 1.0 Plus MAC Address

Less-than, Greater-than, Equal Matrix With MAC Addresses Added

I il 1} I I I (eT)ui4
I il 0 I il I (TT)UAS
I il 1} I i I (oT)1esay
I il 1} I il I (6)usnd
I il 1} I il i 8oV
I il 0 I il 0] (2)#basIxNdOL
I il 1} I il 0] (9)#basdoL
I il 0 I il [(g)uodiseadoL
[eT ‘2 '6 ‘ST ‘9l il 1} I i 0] (uodoisdoL
[9'6 ‘G ‘ST ‘0Tl [S ‘0T 'TT ‘€T ‘9 ‘ST ‘6] 0 I il I (e)oeisa
[eT ‘s ‘sT ‘0Tl [€T ‘9 ‘ST ‘6l [6'9 'vT ‘s ‘ST ‘0Tl I il I (enseadl
[€T ‘0T ‘TT ‘6 ST ‘9] [9'6 ‘0T ‘ST ‘dl [T '0T ‘TT ‘6 ‘ST ‘9l [S ‘0T 'TT ‘6 ‘ST ‘9] I I (T)oeNIS
[T ‘6 'ST ‘9] [T ‘0T ‘ST ‘gl [S ‘0T ‘¥T 6 ‘ST ‘9] [6 ‘ST ‘9] [6'9 ‘T ‘0T ‘ST ‘gl I (0)o4sdI
(g)uodiseadoL | (#)H0d2ISdOL [(e)oenisa | (2nsaadl | [GEEREES [(©)ousdl
i i 0 i i i (eT)uid
I il 1} I il 0 (TT)UAS
I il 0 I i I (oT)19894
I il 1} I i I (6)usnd
I il 0 I il I (8)1ov
I i 1} I i O ()#basixndOL
I il 0 I il 0] (9)#basdoL
I il 1} I I Of (g)uodiseadoLl
[0T ‘¥T ‘TT ‘€T ‘2L ‘S 6 ‘ST ‘9] il 0 I il 0] (ruodoisdoL
[tt'2vT'9'er'6's'sT 0Tl [TT ‘L '¥T 'S 'OT ‘€T ‘9 ‘ST ‘6l 1} I i I (€)oenisa
[orztr'vr'er's'6'sT'9l [TT°L'9 VT ‘€T ‘6 ‘0T ‘ST ‘gl [TT's'2'0T ‘6 ‘ST ‘9l I il I (enseadl
[tt'zvr's'er'or'6'st'ol [tT'2'vT'9'cr'6'or'sT'al [ET'2'STTvT 0T '6°GT'9] [TT 'L €T '9 ‘¥T '6 ‘0T 'ST ‘al il I (T)2BN2IS
[tT'2'9'v1'er'6's'st'or]l [oT‘2'tT'vr'er's‘'o'st'el [pT'eT'2'6'TT'9's'sT'0T] [OT'S‘Z'€T‘TT'¥T'9'sT'6l [TT'S ‘L 0T ‘9 ST ‘6l I (0)oysdI
(S)HodiseadoL | (#)H0d2ISdOL [(g)oenisa | (2nsaadl | [GEEREES [(@oxsdI

SUOISS®S 18U|2 1 pajoodsdi Uo paisa) ‘siexoed HO0T apisul T¥e8Man eredT uo paurel |

Figure E.1
Shows Detection of IP Spoof Attack

0 0 0 il I} (gT)uid
Il 0 0 Il i} (TT)uAS
0 0 0 il il (oT)1esay
[tT2gT] 0 1 I il (6)usnd
[2'1T 1] [, TT 0T ‘T ‘€T ‘STl 0 Il Il (8)10v
[Tt g1l [TT ot ‘2 ‘s gT] [S‘€T ‘vT ‘0T ‘TT ‘2 ‘STl il O ()#basixndoL
ST TT 2 [ST'oT'9‘TT ‘€T '6 ‘G ‘2] ['6'9'ST 1T 2] [ST'OT ‘9 'TT ‘€T '6'G ‘] Of (9)#basdoL
[2'sT't1] [oT'9'¥T ST L'G'6 ‘€T ‘TT] [eT's‘oT 'vT ‘2 ST TT] [ST'OT ‘9 ‘¥T°L'G'6 ‘€T ‘IT] [5'sT ‘9 ‘et ‘6l (S)HodisaadolL
[tr'st'2l [9'0T 'vT'ST'TT'6'G ‘€T ‘L] [et'6'9'Tr'sT 2l [ST'9'OT '¥T'TT'6'G ‘€T ‘L [sT 0T ‘€T ‘sl| (¥)H0d2ISOL
[2'sT't1] [oT'9 '¥T'ST'L'G'6 ‘€T ‘TT] [eT'6'0T 'vT‘2'ST'TT] [ST'OT'9 ‘¥T°L'G'6 ‘€T ‘TT] [S'0T ‘ST ‘9 ‘€T ‘6] (€)oeisa
[2'sT't1] [OT'9‘¥T'ST L'G'6 ‘€T ‘TT] [eT's‘0T ‘¥T ‘2 'ST‘TT] [ST'OT ‘9 ‘¥T°L'G ‘6 ‘€T ‘Tl [ST ‘9 ‘€T ‘6l (2)1saadi
[tr'st'2l [9'0T 'vT'ST'TT'6'S ‘€T ‘L] [et's'or‘tr'st ‘2l [ST'Q 0T ‘vT'TT'6'G ‘€T ‘Ll [9'6 ‘ST ‘0T ‘€T ‘gl (T)2ENDIS
[tr'st'2l [9'0T 'vT'ST'TT'6 'S ‘€T ‘A [eT'6'9'$T ‘TT'ST ‘2] [ST ‘90T ‘T ‘1T ‘6 'S ‘€T /] [ST ‘0T ‘€T ‘gl (0)odsdI
(o1)1988y | (6)usnd | (8)1V (2)#basSIXNdO L (9)#basdoL
i i 1} i i (eT)uid
0 0 0 il I} (TT)uAS
I} 0 0 il 1] (oT)1esay
[94T ‘€T '6 ‘'TT ‘L 'ST] 1] 0 il il (6)usnd
[€T ‘9 '¥T ‘6 ‘L ‘TT ‘STl [5°2‘TT ‘0T ‘¥T ‘€T ‘STl 0 il il (810
[9vT ‘€T '6 'TT ‘L 'ST] [PT ‘692 ‘TT ‘0T ‘S ‘ST] [5‘€T ‘vT ‘0T 'TT ‘L ‘STl Il O ()#basixNdOL
[o‘0T ‘€T '6'S'GT ‘L ‘TT] [T '9‘L 0T ‘€T ‘ST ‘6 'S ‘TT] [PT‘6'9°G 0T ‘ST ‘2 ‘TT] [PT‘2‘9°0OT ‘€T ‘ST ‘6 'S ‘TT] Of (9)#besdoL
[ot's'o'vr'e'er's'sT'TTl [9'vT'2'0T'sT'S'6'€T'TTl [6'vT'€T'G'9 0T ‘2'ST'TT] [2'9'PT'OT ‘ST 'G'6 ‘€T ‘TT] [6 ‘vT '9'ST ‘G ‘€T ‘0Tl (G)HodiseddoL
[Pr'eor'9'ser'tr'st'2l lor'prrT'9'st'6e‘'s‘er’2l [pr'oT's‘er‘e'9'tr'sT ‘2l [TT'oT‘vT9'st'6‘s'eT ‘2l [TT'Z°0T '¥T'S'ST ‘6 ‘€T ‘9l] (#)HOdIISHOL
[o'6ot'pr'ser'2'sTt'TTl [9'vr'2'ot'sTt's'6'eT‘TTl [S'9'€T'6 ‘¥T ‘0T ‘2 'ST'TTl [2'9‘'PT'OT ‘ST 'G'6 ‘€T ‘Il [9'6 ‘T ‘ST 'S ‘€T ‘0Tl (e)oenisa
[PT'96‘or'ser'tr'st'2l lot'vr'rr'9'st'e‘'s'er’2l [S‘OT‘vT'eT'6'9 ‘TT'ST 2l [TT'OT '¥T‘9'ST'6 'S 'eT ‘Ll [S ‘¥T ‘0T ‘ST '6 ‘€T ‘9] (zhsaadl
[otr's‘o'vr'e‘ecr'tr'sT'2l [lot'vr'IT'9'st'6‘'s'er’2l [6°9'PT'eT 'S 'OT ‘TT'ST 2] [TT‘OT ‘¥T‘9°'ST ‘6 'S ‘€T ‘L] [S‘¥T ‘0T ‘ST ‘6 ‘€T ‘9] (T)oeN2IS
[or's'o'pr'6'€r'2'sT'TTl [9'vT'2'0T'sT'S'6'€T'TT] [6'9'PT'€T'S'0T ‘2 'ST'TT] [2'9'pT'OT ‘ST 'G'6 ‘€T ‘1Tl [6 ‘vT '9'ST 'S ‘€T ‘0Tl (0)o¥SsdI
[(0T)1858 [(6)usnd [[ONEN (2)#baSIXNdO L (9)#basdoL

L ere@T uo paures|

E-2

il

[9'vT ‘L €T ‘ST 'TT]

[rT ‘€T ‘g1l

[o'vT €T '6 'TT 'L 'ST]
[2'0T ‘vT ‘1T ‘€T ‘ST]

[9'vT ‘€T ‘6 ‘TT ‘L ‘ST]

[0T ‘€T ‘9 '6 'G ‘ST 'TT ‘]

9 YT ‘0T ‘6 'S ‘€T ‘L ‘ST ‘TT]
0T ‘¥T'9 ‘G '6 ‘€T ‘TT 'ST '/
9 PT 0T ‘6 ‘G ‘€T L ‘ST ‘TT]
9 ‘YT ‘0T ‘6 'S ‘€T ‘L ‘ST ‘TT]
0T ‘#T'9 ‘G '6 ‘€T ‘TT 'ST ‘2]

[
[
[
[
[
[0T ‘#T ‘9 'S ‘6 ‘€T ‘TT ‘ST ‘2]

I}
i}
[eT ‘ST ‘vT]

[eT'6 'TT ‘ST 'L ‘9 ‘¥l

[9'2 €T '6 ‘ST ‘vl

[eT ‘6 ‘TT ‘ST ‘2 ‘9 ‘pT]
[ot'6 ‘G2 ST 1T 9]
[9°G'6 ‘€T 'TT ‘ST ‘L ‘vT ‘0Tl
[0T ‘6 ‘€T 'G ‘L ‘ST ‘TT ‘T ‘9]
[9 6 ‘€T 'TT ‘ST ‘L ‘¥T ‘0Tl
[9°G'6 ‘€T ‘TT ‘ST ‘2 ‘vT ‘0Tl
[0T ‘€T '6 ‘2 ‘ST 'TT ‘¥T ‘9]
[0T ‘6 'S ‘€T ‘L ‘ST 'TT ‘¥ ‘9]

(gT)uid

(TT)UAS

(oT)1988

(6)usnd

(8)1ov

(2)#basSIXNdD L

(9)#basdoL

(G)Hodisaado L

(7)H0d2ISdOL

(€)oeisa

(zhseadi

(T)2ENDIS

(0)odsdI

(zT)ui4

(TT)UAS

i

[6'9 ‘¥T ‘2 ‘€T ‘ST ‘TT]
[6'TT 9L 'vT ‘€T ‘ST]

[0T ‘S ‘9 ‘€T ‘¥T ‘6 ‘TT ‘L ‘STl
[S'2 0T 'pT ‘TT ‘€T ‘STl

[0T ‘'S ‘9 ‘€T ‘¥T ‘6 ‘TT ‘2 ‘STl
[eT ‘9 ‘0T '6 ‘G ‘ST 'L ‘TT]
9'vT ‘0T ‘6 ‘G ‘€T ‘L ‘ST ‘Tl
0T ‘#T'9 ‘G ‘6 ‘€T ‘TT ‘ST ‘]
9 ‘¢T ‘0T ‘6 ‘G ‘€T ‘L ‘ST ‘TT]
0T ‘#T'9 ‘G ‘6 ‘€T ‘TT 'ST ‘2]
0T ‘#T'9 ‘G ‘6 ‘€T ‘TT ‘ST ‘]

[
[
[
[
[
[9'vT ‘0T '6 'S ‘€T 'L 'ST ‘1Tl

i
I}
[9°TT '6 ‘L ‘€T ‘ST ‘¥l

[eT ‘6 'TT ‘ST ‘2 ‘9 ‘¥l

[0T ‘'S 'TT'9 'L €T '6 ‘ST ‘Tl
[eT ‘6 'TT ‘ST ‘2 ‘9 ‘¥l

[5'6 ‘TT ‘ST ‘2 ‘9 ‘0Tl
[€T'9'5'6 'TT ‘ST ‘L ‘vT ‘0Tl
[eT ‘0T '6 'S ‘L ‘ST ‘TT ‘¥T ‘9]
[S‘9'€T '6 'TT ‘ST ‘L ‘vT 0Tl
[eT ‘0T '6 ‘G ‘L ‘ST 'TT ‘T ‘9]
[S‘0T ‘€T ‘6 ‘L ‘ST ‘TT ‘¥T ‘9]
[€T'9'S'6 'TT ‘ST 'L ‘vT ‘0Tl

(zT)ud

(TT)uAS

(oT)19884

(6)usnd

(8)ov

(2)#baSIXNdO L

(9)#basdoL

(G)HodiseadoL

(7)U0d2I1SdO L

(e)oenisa

(zhsaadl

(T)oeN2IS

(0)o¥SsdI

(zT)uid

(TT)uhs

L ere@T uo paures|

E-3

Appendiz F. Run Time Data

of Packets [V0.O[V1.0|V244|Vv2116|V20|V3.0| V4.0

1,000 1 1 19 118 6 124 424

5,000 4 6 73 457 33 455 2063

10,000 7 11 154 658 64 822 4033

25,000 20 28 344 1401 156 2053 11330

50,000 36 66 783 3218 314 4126 26624

100,000 96 136 1170 8134 697 8947 54203

200,000 179 331 2740 20710 2145 19363| 118407

Figure F.1 Run Times of Code Versions
*Times are indicated in seconds

Version 2.0 Standard Deviation
2500
& 2000 Z
: /
% 1500 / —e— Ten Runs of
c 1000 Version 2.0
£ 500 /‘/
0 >— : . T T
Q \) Q Q Q Q Q
\) \) \)) \) \) \)
Q I\ Q Q Q Q \)
N %) ,\/0 qﬁo 030 00 00
> Vv
Number of Packets

Figure F.2 Standard Deviation
Ten Runs of Code Version 2.0 on Mon and Tue Week 1 LL Data

F-1

Appendixz G. Lincoln Lab Attack Descriptions

Apache 2 The Apache?2 attack is a denial of service attack

against an apache web server where a client sends a request with
many http headers. If the server receives many of these requests
it will slow down, and may eventually crash. This exploit was
adapted from C code originally posted to the bugtrag mailing list.

A C- shell wrapper was also created which executes the apache2 C
program in a loop until the server being attacked is no longer
responsive. As soon as the attack was launched the load average
(as reported by the 'top' program) of the victim server jumped to

5 or more. As more and more requests were submitted to the web
server the memory usage and load average of the victim continued
to climb until eventually the httpd daemon ran out of memory and
crashed. At this point the server no longer responded to http
requests and the httpd daemon needed to be restarted by the
superuser for service to be restored.

DoSNuke DoSNuke is a Denial of Service attack that sends Out Of

Band data (MSG OOB) to port 139 (NetBIOS), crashing the NT victim
(bluescreens the machine). A Perl script, dosnuke.pl, runs on an
NT attacker. Open dosnuke.pl for editing and set the time of day
to run the attack. Then run dosnuke.pl or place it in the startup
group. The script takes no arguments (always attacks Computer
172.16.112.100).

IMap The Imap attack exploits a buffer overflow in the Imap

server of Redhat Linux 4.2 that allows remote attackers to execute
arbitrary instructions with root privileges. The Imap server must

be run with root privileges so it can access mail folders and
undertake some file manipulation on behalf of the user logging in.
After login, these privileges are discarded. However, a buffer
overflow bug exists in the authentication code of the login
transaction, and this bug can be exploited to gain root access on
the server. By sending carefully crafted text to a system running

a vulnerable version of the Imap server, remote users can cause a
buffer overflow and execute arbitrary instructions with root
privileges. The Imap attack used in the 1998 DARPA intrusion
detection evaluation was part of the Impack 1.03 attack toolkit.
This toolkit contained precompiled binary programs for the Linux
platform that would scan for vulnerable machines, as well as send
the necessary message to exploit the buffer overflow and gain
access to a root shell. The Impack contained detailed instructions
on how to use these precompiled programs and took very little

skill to use. The release of the Impack made this vulnerability
especially dangerous, as any user with a Linux machine and the
ability to follow instructions could use this attack to remotely

gain root access to any vulnerable hosts.

IPSweep An Ipsweep attack is a surveillance sweep to determine

which hosts are listening on a network. This information is useful
to an attacker in staging attacks and searching for vulnerable
machines. There are many methods an attacker can use to perform an
Ipsweep attack. The most common method and the method used within
the simulation is to send ICMP Ping packets to every possible
address within a subnet and wait to see which machines respond.
The Ipsweep probes in the simulation were not stealthy the sweeps

Figure G.1 ~ Attack Descriptions (adapted from Lincoln Lab Database [LLab99])

G-1

were performed linearly, quickly and from a single source.

Land

The Land attack is a denial of service attack that is effective against
some older TCP/IP implementations. The only vulnerable platform
used in the 1998 DARPA evaluation was SunOS 4.1. The Land
attack occurs when an attacker sends a spoofed SYN packet in which
the source address is the same as the destination address. The land
exploit program used in the DARPA evaluation was adapted from a C
implementation found at http://www.rootshell.com. The exploit is
quite simple and the code could easily be rewritten in any language
with access to the TCP sockets interface. The code sends a single
SYN packet with the source address spoofed to be the same as the
destination address. Within the simulation, this exploit was run
against a Sun SPARC WorkStation running SunOS version 4.1.
when a TCP SYN packet with an identical source and destination
address was received by this host, the system completely locked up.
In order to restore service, the machine had to be physically turned
off and on again.

Mscan

Mscan is a probing tool that uses both DNS zone transfers

and/or brute force scanning of IP addresses to locate machines,

and test them for vulnerabilities. The Mscan program used in the
simulation was compiled from source code found at. Mscan was easy
to run and has several command line options for specifying the
number of machines to scan and which vulnerabilities to look for.
Within the simulation, mscan was used to scan the entire

eyrie.af.mil domain for the following vulnerabilities: statd,

imap, pop, IRIX machines that have accounts with no passwords,
bind, various cgi-bin vulnerabilities, NFS, and open X servers.

NT InfoScan

NTInfoScan is a NetBIOS based security scanner. It

scans the NT victim to obtain share information, the names of all

the users, services running, and other information. The results

are saved in an html file named .html where victim is the victim's
hostname. View the page from mnemonix for more information. A Perl
script runs on an NT attacker. Edit the first line of the ntis.pl

with the time of day the attack should run and then run ntis.pl or

put it in the Startup group and restart the machine. Ntis.pl
automatically scans hume.eyrie.af.mil. The attack may take up to

20 min. to complete.

Ping Of Death

The Ping of Death is a denial of service attack

that affects many older operating systems. Although the adverse
effects of a Ping of Death could not be duplicated on any victim
systems used in the 1998 DARPA evaluation, it has been widely
reported that some systems will react in an unpredictable fashion
when receiving oversized IP packets. Possible reactions include
crashing, freezing, and rebooting. Several implementations of the
Ping of Death exploit can be found at http://www.rootshell.com as
well as many other sources on the web. This exploit is popular
because early versions of the ping program distributed with
Microsoft Windows95 would allow the user to create oversize ping
packets simply by specifying a parameter at the command line (i.e.
ping 65510). Thus, many users could potentially exploit this bug
without even making the effort to download and compile a program.

The Ping of Death attack affected none of the victim systems used

G-2

in the evaluation. The attack was included as an example of an
attempted known attack that fails to have an effect.

Portsweep

Nmap is a general-purpose tool for performing network

scans. Nmap supports many different types of portscansuoptions
include SYN, FIN and ACK scanning with both TCP and UDP, as well
as ICMP (Ping) scanning. The Nmap program also allows a user to
specify which ports to scan, how much time to wait between each
port, and whether the ports should be scanned sequentially or in a
random order. At the time of the evaluation, Nmap was the most
complete publicly available scanning tool. During the simulation,
Nmap was used to perform portscans on between one and ten
computers using SYN scanning, FIN scanning, and UDP scanning of
victim machines. Both sequential and random scans were performed
in the simulation, and the timeout between packets was varied to

be anywhere from one second to six minutes. The number of ports
scanned on each machine was varied between three and one thousand.

Queso

QueSO is a utility used to determine a what type of

machine/operating system exists at a certain IP adress. QueSO
sends a series of 7 tcp packets to any one port of a machine and

uses the return packets it receives to lookup the machine in a
database of responses. To make the attack more stealthy, we
increased the delay between sending the packets. In the 1999 DARPA
evaluation machines are sent the 7 QueSO packets with delays of 3,
5, and 10 minutes.

Satan

SATAN is an early predecessor of the SAINT scanning

program described in the last section. While SAINT and SATAN are
quite similar in purpose and design, the particular

vulnerabilities that each tools checks for are slightly different.

Like SAINT, SATAN is distributed as a collection of perl and C
programs that can be run either from within a web browser or from
the UNIX command prompt. SATAN supports three levels of scanning:
light, normal, and heavy. The vulnerabilities that SATAN checks

for in heavy mode are: ? NFS export to unprivileged programs ? NFS
export via portmapper ? NIS password file access ? REXD access ?
tftp file access ? remote shell access ? unrestricted NFS export ?
unrestricted X Server access ? write-able ftp home directory ?
several Sendmail vulnerabilities ? several ftp vulnerabilities

Scans in light and normal mode simply check for smaller subsets of
these vulnerabilities.

Self Ping

The selfping attack is a denial of service attack in

which a normal user can remotely reboot a machine with a single
ping command. This attack can be performed on Solaris 2.5 and
2.5.1.

The ping command broadcasts echo request packets using the
localhost as the multicast interface. Within a couple seconds the
system panics and reboots. There are two version of this attack in
the 1999 DARPA evaluation. One version creates an atjob on the
victim machine and then logouts. The other, more malicious
version, creates a cronjob which reboots the machine every 5
minutes. The administrator must remove the cronjob in order to
keep the machine from rebooting.

SYNFlood

A SYN Flood is a denial of service attack to which

G-3

every TCP/IP implementation is vulnerable (to some degree). Each
half-open TCP connection made to a machine causes the *“tcpd"
server to add a record to the data structure that stores

information describing all pending connections. This data
structure is of finite size, and it can be made to overflow by
intentionally creating too many partially-open connections. The
half-open connections data structure on the victim server system
will eventually fill and the system will be unable to accept any

new incoming connections until the table is emptied out. Normally
there is a timeout associated with a pending connection, so the
half-open connections will eventually expire and the victim server
system will recover. However, the attacking system can simply
continue sending IP-spoofed packets requesting new connections
faster than the victim system can expire the pending connections.
In some cases, the system may exhaust memory, crash, or be
rendered otherwise inoperative. The neptune exploit code used in
the simulation was compiled from C code originally posted to the
bugtraq archive. The neptune program allows the user to specify a
victim host, the source address to use in the spoofed packets, the
number of packets to send, and the ports to hit on the victim
machine (including an “infinity" option that would attack all

ports). The neptune exploit was effective against all three of the
victim machines used in the simulation. Every TCP/IP
implementation is vulnerable to this attack to a varying degree
depending on the size of the data structure used to store incoming
connections and the timeout value associated with half-open
connections. As a point of reference, sending twenty SYN packets
to a port on a Solaris 2.6 system will cause that port to drop
incoming requests for approximately ten minutes. During the
simulation, a neptune attack which sent 20 SYN packets to every
port from 1 to 1024 of the Solaris server once every ten minutes
was able block incoming connections to any of these ports for more
than an hour.

TearDrop

The teardrop exploit is a denial of service attack that

exploits a flaw in the implementation of older TCP/IP stacks.

Some implementations of the IP fragmentation re-assembly code
on these platforms does not properly handle overlapping IP fragments.
The teardrop name is derived from a widely available C program
that exploits this vulnerability. This exploit code can be found

at http://www.rootshell.com and in the Bugtraq archives. Although
many systems are rumored to be vulnerable to the teardrop attack,
of the systems used in the DARPA evaluation, only the Redhat Linux
4.2 systems were vulnerable. The teardrop attack would cause these
machines to reboot.

Udpstorm

A Udpstorm attack is adenial of service attack that causes network
congestion and slowdown. When a connection is established
between two UDP services, each of which produces output, these
two services can produce a very high number of packetsthat can
lead to a denia of service on the maching(s) where the services are

offered. Anyone with network connectivity can launch an attack;

G-4

no account access is needed. For example, by connecting a host's
chargen service to the echo service on the same or another machi
all affected machines may be effectively taken out of service becal
of the excessively high number of packets produced. An illustratio
of such an attack is presented in Figure 6-2. The figure demonstrg
how an attacker is able to create a never-ending stream of packet
between the echo ports of two victims by sending a single spoofed
packet. First, the attacker forges a single packet that has been spd
to look like it is coming from the echo port on the first victim mach
and sends it to the second victim. The echo service blindly respon
to any request it receives by simply echoing the data of the reques
back to the machine and port that sent the echo request, so when
victim receives this spoofed packet it sends a response to the ech
port of the second victim. This second victim responds in like kind
and the loop of traffic continues until it is stopped by intervention
from an external source [10]. Code that exploits this vulnerability \
posted to the bugtrag mailing list. This program sends a single spo
UDP packet to a host. This single spoofed packet is able to creatq
never-ending stream of data being sent from the echo port of one
machine to the echo port of another. This loop created network
congestion and slowdown that would continue until the inetd
daemon was restarted on one of two victim machines

O — —~ O = N U —~ o5 & 2

B

G-5

Appendiz H. Screen Shots of Attacks Analyzed with GOPHER

Figure H.1 Attack 45.192523 IP Sweep

This attack sweeps through IP destination addresses 172.116.112.1 to 172.116.112.254
consecutively, as can be seen in field 15

} 1

Figure H.2 Attack 54.145832 Satan Scan Main Screen
This screen shot shows that this scan was conducted in both TCP and UDP

H-1

LIANMAQIIE
I 2=

Figure H.3 Attack 54.145832 Satan Scan UDP Drill Down
This attack scanned UDP destination ports 1 - 177 (field 19)

Figure H.4 Attack 54.145832 Satan Scan TCP Drill Down
This attack scanned TCP destination ports 1 - 9999 (field 19) from source ports
878-32830 (field 18)

H-2

H-3

Attack 54.195951 Mscan

Figure H.6

ol
@)
H
s M ccnnvennas ST NRIREEEERINRIRARRR] ST)
1111111111 SRRRIRARER[G] — ["ETV o BEP S REERS ARSI Huououuo.:u.i -
-,MUDDODGO\‘D 7 m w N o - m “ m7 w
g . , .
g m. m [&l =] H _W | § |
g i H S i1
£ m m |) olR itH
-8 1 H v B me_mmmii
RN gt : e §EER sas
mr L = 9 . 3 i n__r F73
& ¥ F 5| ® %8cscenzhisilzlnseile oo ol DL |E2E
B0 _FE 5 E By
O = o T R O
S &
R O HE m ||||||||||| < (¥ & e
||||||||||] a . R P e S A e (0] i
< Sy fd o B a .
N L) O O @
B & n < - EBEsSSesran e 8 O
& e nna Lnlm O e e (¥ Ay -
Ry * .;nb@) m IIIIIIIIIIIIIII e (o Ry E3
“ * N L‘m m IIIIIIIIIIIII e (oo H,I. =
;.ﬂ._. N Yy R e (oF ~ L
” % °© mb <y w Cix
i o B .5 o SRS S O ¢ O
g 0 <+ O @ i = o
P o — 1m Q0 ol v -
g < £ @ s e o ¥
e 0 m g - - — oo — — — — — < Y 2 {ide
: e I R = e g O
x 3 = e
P 2, P S 2 g WS- . 5 pes
2 X O O @ @ PBewmme e e e — =¥ - (e
oy x < g 2 5
o il g o e== == f05 %
s @) n IIIIIIIIIIIIII XD 1D =
% QB £
1 26y el 0 a ..m |||||||||||||||| < =G .
m IIIIIIIIIIIIIIII (> = H % Lol - s R X e penes E o
o e s o - =R - ity — G =
= L i a =N - S — - - - - — - - & 27
e e ST et e & i B0 E Rl e =¥ *
< R -G 2 T N - e <O oy x
m IIIIIIIIIIIIIIII =¥ X m IIIIIIIIIIIIIIII e (:cF =+ (o £
_w IIIIIIIIIIIII - @ IIIIIIIIIIIIII e CoF Rl x
m |||||||||||| ' 3 = B—=—-----_- =
B Ox CHE : e o - O
i = i w e (3 ° e
i}
—
)
i

Field 18 shows this attack scanning from TCP source ports 113-3279

Figure H.7 Attack 41.162715 Portsweep
This shows all 10 packets of this attack have a TCP sequence number of 0 (field 20)

i

A
(T =

Figure H.8 Attack 52.130655 Ping of Death
The 17 packets of this attack look like two since they are repeated packets

H-4

Appendiz 1. Source Code Availability

The Java code for the different multiple-packet intrusion detection sensors and GOPHER
are not included as part of this document. Those interested in obtaining a copy of the

source code should direct their requests to:
Dr. Gregg Gunsch
AFIT/ENG
2950 P Street
WPAFB, OH 45433-7765

gregg.gunsch@afit.edu

I-1

Bibliography

[Sans99] “Global Incident Analysis Center Special Notice-ECN and its Impact on
Intrusion Detection.” World Wide Web, 1999. World Wide Web Page. URL

http://wuw.sans.org/y2k/ecn.htm.

[Alle00] Allen, Julia, et al. State of the Practice of Intrusion Detection Technologies.
Technical Report CMU/SEI-99-TR~028, Carnegie Mellon Software Engineering
Institute, January 2000.

[Almg01] Almgren, Magnus and Ulf Lindqvist. “Application-Integrated Data Collection
for Security Monitoring.” Recent Advances in Intrusion Detection (RAID 2001).
LNCS. 22-36. Davis, California: Springer, October 2001.

[Amor99] Amoroso, Edward. Intrusion Detection; An Introduction to Internet
Surveillance, Correlation, Trace Back, Traps, and Response. Intrusion.Net Books,
Sparta, NJ, USA, 1999.

[Axen01] Axent Technologies, Inc., “NetProwler Dynamic Network Intrusion Detection.”
World Wide Web, 2001. World Wide Web Page. URL
http://enterprisesecurity.symantec.com/PDF/AxentPDFs/NetProwler_Dsht_
Sy’mantec.pdf.

[Bace01] Bace, Rebecca and Peter Mell, “Intrusion Detection Systems.” White Paper,
2001. Available electronically at URL http://www.snort.org/docs/nist-ids.pdf.

[Brid00] Bridges, Susan M. and Rayford B. Vaughn. “Fuzzy Data Mining and Genetic
Algorithms Applied to Intrusion Detection.” Proceedings of the 23rd National
Information Systems Security Conference. 13-31. National Institute of Standards
and Technology, National Computer Security Center, 2000.

[Chap01] Chappell, Laura, “You're Being Watched: Cyber-Crime Scans.” White Paper,
2001. World Wide Web Page. URL
http://www.nwconnection.com/2001_03/cybercrime/.

[Cisc01] Cisco, Systems, “Cisco Intrusion Detection.” World Wide Web, 2001. World
Wide Web Page. URL
http://www.cisco.com/warp/public/cc/pd/sqsw/sqidsz/index.shtml.

[CEnc00] Columbia University, in the City of New York. The Columbia Electronic
Encyclopedia, Sixth Edition, 2000.

[Cert98] Computer Emergency Response Team Coordination Center, Carnegie Mellon
Software Engineering Institute, “CERT Advisory CA-1998-12 Remotely Exploitable
Buffer Overflow Vulnerability in mountd.” World Wide Web, 1998. World Wide
Web Page. URL http://www.cert.org/advisories/CA-1998-12.html.

[Dasg98] Dasgupta, Dipankar, editor. Artificial Immune Systems and Their
Applications. Berlin: Springer-Verlag, 1998.

BIB-1

[Deba92] Debar, Hervé, et al. “A Neural Network Component for an Intrusion Detection
System.” Proceedings of the 1992 IEEE Computer Society Symposium on Reserach in
Security and Privacy. 240-250. IEEE, IEEE Service Center, Piscataway, NJ, 1992.

[Durs99] Durst, Robert, et al. “Testing and Evaluating Computer Intrusion Detection
Systems,” Communications of the ACM, 42(7) (1999).

[Forr98] Forrest, Stephanie, et al. “Artificial Neural Networks for Misuse Detection.”
Proceedings of the 21st National Information Systems Security Conference. 441-454.
1998.

[Forr97] Forrest, Stephanie, et al. “Computer Immunology,” Communications of the
ACM, 40:88-96 (1997).

[Ghos99a] Ghosh, A. and A. Schwartzbard, “A study in using neural networks for
anomaly and misuse detection,” 1999.

[Ghos99] Ghosh, Anup, et al., “Learning Program Behavior Profiles for Intrusion
Detection.” World Wide Web, 1999. World Wide Web Page. URL
http://www.usenix.org/publications/library/proceedings/detection99/
full),_papers/ghosh/ghosh_html/.

[Glob01] Global Spy Shop, “Intrusion Detection Alarms and Cameras.” World Wide
Web, 2001. World Wide Web Page. URL
http://wuw.globalspyshop.com/IntrusionDetection.htm.

[Grah00] Graham, Robert, “FAQ: Network Intrusion Detection Systems.” World Wide
Web, 2000. World Wide Web Page. URL
http://www.robertgraham.com/pubs/network-intrusion-detection.html.

[Harm00] Harmer, Paul. A Distributed Agent Architecture for a Computer Virus
Immune System. MS thesis, AFIT/GCE/ENG/00M-02, School of Engineering and
Management, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH,
March 2000.

[Harm01] Harmer, Paul, et al. “A Distributed Agent Based Architecture for Computer
Security Applications,” To Appear in IEEE Transactions On Evolutionary
Computation, Special Issue on Artificial Immune Systems (2001).

[Hofm99] Hofmeyr, Steven and Stephanie Forrest. “Architecture for an Artificial Immune
System,” Evolutionary Computation, 7(1):1289-1296 (1999).

[Hofm99a] Hofmeyr, Steven A., “An Interpretive Introduction to the Immune System.”
White Paper, 1999. University of New Mexico, Albuquerque, NM 87131.

[Inse97] Inselberg, Alfred. “Multidimensional Detective.” Proceedings of IEEE
Symposium on Information Visualization, InfoVis ’97. 1997. Published in Readings
in Information Visualization Using Vision to Think, Morgan Kaufmann Publishers,
Inc.

[ISS00] Internet Security Systems, Inc., “Internet Security Systems Ships RealSecure for
Windows 2000.” World Wide Web, 2000. World Wide Web Page. URL
http://bvlive0Ol.iss.net/issEn/delivery/prdetail. jspToid=14714.

BIB-2

[ISSI98] Internet Security Systems, Inc. Network vs. Host Based Intrusion Detection,
1998. World Wide Web Page. URL http://secinf.net/info/ids/nvh_ids/.

[Jane97] Janeway, Charles and Paul Travers. Immuno Biology The Immune System in
Health and Disease. Garland Publishing Inc, New York and London, 1997.

[Jonc95] Joncheray, Laurent. A Simple Active Attack Against TCP, 1995. World Wide
Web Page. URL http://citeseer.nj.nec.com/joncheray95simple.html.

[KemmO01] Kemmerer, Richard A. STAT Projects, 2001. World Wide Web Page. URL
http://www.cs.ucsb.edu/ "kemm/netstat.html/projects.html.

[Keph97] Kephart, Jeffrey and William Arnold, “Automatic Extraction of Computer
Virus Signatures,” 1994.

[Keph97a] Kephart, Jeffrey, et al., “Blueprint for a Computer Immune System,” 1997.

[Kim0Ola] Kim, Jungwon and Peter Bentley. “An Evaluation of Negative Selection in an
Artificial Immune System for Network Intrusion Detection.” Proceedings of the
Genetic and Evolutionary Computation Conference 2001 (GECCO-2001). 2001.

[Kim01] Kim, Jungwon and Peter Bentley. “Towards an Artificial Immune System for
Network Intrusion Detection: An Investigation of Clonal Selection with a Negative
Selection Operator.” Proceedings of the Congress on Evolutionary Computation

(CEC-2001). 2001.

[LLab99] Laboratory, Lincoln. Lincoln Labratory Database of Attacks. MIT Lincoln
Labratory, 1999. Available electronically at
http://ideval.II.mit.edu/Links/attackDB.html.

[Lamo99] Lamont, Gary B., et al. New Ideas in Optimization, A Distributed Architecture
for a Self-Adaptive Computer Virus Immune System, chapter 11, 167-183.
McGraw-Hill, 1999.

[LeeWO00a] Lee, Wenke, et al. “Adaptive Intrusion Detection: a Data Mining Approach,”
Artificial Intelligence Review, 14(6):533-567 (2000). Available electronically at URL
http://wuw.csc.ncsu.edu/faculty/lee/publications.html.

[LeeWO00] Lee, Wenke, et al. “A Data Mining and CIDF Based Approach fro Detecting
Novel and Distributed Intrusions.” Proceedings of Recent Advances in Intrusion
Detection, Third International Workshop. 49-65. Berlin: Springer, 2000. Available
electronically at URL
http://www.csc.ncsu.edu/faculty/lee/publications.html.

[LeeW99a] Lee, Wenke, et al. “Automated Intrusion Detection Methods Using NFR.”
Proceedings of the Workshop on Intrusion Detection and Network Monitoring. 1999.

[LeeW98] Lee, Wenke and Salvatore Stolfo. “Data Mining Approaches for Intrusion
Detection.” Proceedings of the 7th USENIX Security Symposium. 1998.

[LeeW99] Lee, Wenke, et al. “A Data Mining Framework for Building Intrusion
Detection Models.” Proceedings of 1999 IEEE Symposium on Security and Privacy.

BIB-3

1999. Available electronically at URL
http://www.csc.ncsu.edu/faculty/lee/publications.html.

[LeeWO00b] Lee, Wenke, et al., “Real Time Data Mining-based Intrusion Detection.”
White Paper, 2000. Available electronically at URL
http://citeseer.nj.nec.com/452795.html.

[MandO1] Manderscheid, Scott, “An Intrusion Detection System Process: Defense in
Depth.” World Wide Web, 2001. World Wide Web Page. URL

http://www.sans.org/infosecFAQ/intrusion/process.htm.

[Mans00] Mansfield, Glenn, et al. “Towards trapping wily intruders in the large,”
34 (4):659-670 (October 2000).

[McC199] McClure, Stuart and Joel Scambray. Hacking Exposed, 1.
Osborne/McGraw-Hill, 1999.

[McHu00] McHugh, John. “The 1998 Lincoln Laboratory IDS Evaluation: A Critique.”
Proceedings of Recent Advances in Intrusion Detection, Third International
Workshop. 145-161. Berlin: Springer, 2000.

[Me98] Mé, Ludovic. “GASSATA, A Genetic Algorithm as an Alternative Tool for
Security Audit Trails Analysis.” Proceedings of the 1st Workshop on Recent
Advances in Intrusion Detection. Berlin: Springer-Verlag, 1998.

[Mich00] Michalewicz, Z. and D. Fogel. How to Solve It: Modern Heuristics. Berlin,
Germany: Springer-Verlag, 2000.

[Neri00] Neri, Filippo. “Comparing Local Search with Respect to Genetic Evolution to
Detect Intrusions in Computer Networks.” Proceedings of the 2000 Congress on
FEvolutionary Computation. 238-243. Piscataway, NJ: IEEE Service Center, 2000.

[NFRS01] Network Flight Recorder Security, Inc. Overview of NFR Network Intrusion
Detection. Technical Report, Network Flight Recorder Security, Inc., July 2001.

[Nort00] Northcutt, Stephen, “Intelligence Gathering Techniques.” White Paper, 2000.
World Wide Web Page. URL http://www.allright.com/S/Security/
Intelligence%20Gathering%20Techniques.htm.

[Paxs98] Paxson, Vern. “Bro: A System for Detecting Network Intruders in Real-Time.”
Proceedings of the Tth USENIX Security Symposium. San Antonio, TX: USENIX,
1998.

[RFC826] Plummer, David C., “An Ethernet Address Resolution Protocol or Converting
Network Protocol Addresses to 48.bit Ethernet Address for Transmission on
Ethernet Hardware.” White Paper, 1982. Available electronically at URL
http://sunsite.dk/RFC/rfc/rfc826.html.

[Porr97] Porras, Phillip A. and Peter G. Neumann. “EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances.” 1997 National Information
Systems Security Conference. oct 1997.

BIB-4

[Proc01] Proctor, Paul E., “Computer Misuse Detection System (CMDS) Concepts.”
Technical Paper, 2001. World Wide Web Page. URL
http://publications.saic.com/.

[Ptac98] Ptacek, Thomas H. and Timothy N. Newsham. Insertion, Fvasion, and Denial
of Service: Eluding Network Intrusion Detection, 1998. Secure Networks paper,
available electronically at URL http://www.nai.com/media/ps/nai_labs/ids.ps.

[Rhod00] Rhodes, Brandon C., et al. “Multiple Self-Organizing Maps for Intrusion
Detection.” Proceedings of 23rd National Information Systems Security Conference.
IEEE, IEEE Service Center, Piscataway, NJ, 2000.

[Roes01la] Roesch, Marty, “SNORT Users Manual.” World Wide Web, 2001. Available
electronically at URL http://www.snort.org/.

[Roes01] Roesch, Marty. Writing Snort Rules: How to Write Snort Rules and Keep Your
Sanity, 2001. World Wide Web Page. URL
http://www.snort.org/writing_snort_rules.htm.

[Sans01] SANS Institute. Intrusion Detection FAQ, 2001. World Wide Web Page. URL
http://www.sans.org/newlook/resources/IDFAQ/ID_FAQ.htm.

[SANSOla] SANS Institute, “SANS Alert Consensus Number 119.” World Wide Web,
2001. Available electronically at
http://www.mail-archive.com/archive@jab.org/msg47460.html.

[Soma97] Somayaji, A., et al. “Principles of a Computer Immune System.” 1997 New
Security Paradigms Workshop. 75-82. Association for Computing Machinery, 1997.

[Stan00] Staniford, Stuart, et al. “Practical Automated Detection of Stealthy
Portscans.” Proceedings of the Tth ACM Conference on Computer and
Communication Security. 2000. Available electronically at
http://www.silicondefense.com/pptntext/spice-ccs2000.pdf.

[Stev99] Stevens, W. Richard. TCP/IP Illustrated: The Protocols, 1. Addison Wesley,
1999.

[USGAOO01] United States General Accounting Office. Washington, DC. Information
Security : Challenges to Improving DOD’s Incidents Response Capabilities.
Technical Report GAO-01-341, United States General Accounting Office. -
Washington, DC, March 2001. report to the Chairman, Cmte. on Armed Services,
House / United States General Accounting Office.

[Whit94] Whitley, Darrell. “A Genetic Algorithm Tutorial,” Statistics and Computing,
4:65-85 (1994).

[Will01] Williams, Paul D. Warthog: Towards a Computer Immune System for Detecting
“Low and Slow” Information System Attacks. MS thesis, AFIT/GCS/ENG/01M-15,

School of Engineering and Management, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, March 2001.

BIB-5

[Will0la] Williams, Paul D., et al. “CDIS: Towards a Comuter Immune System for
Detecting Network Intrusions.” Proceedings of Recent Advances in Intrusion
Detection, Fourth International Workshop. Berlin: Springer, 2001.

BIB-6

Lieutenant Bebo enlisted in the Air Force in 1985 as an Airborne Cryptologic Linguist
and has flown in several reconnaissances aircraft including the RC-135V /W (Rivet Joint),
the RC-135U (Combat Sent), the RC-135S (Cobra Ball), the C-130 (Senior Scout), and
the E-3B/C (AWACS). He rose to the rank of Technical Sergeant prior to being selected
for the Air Force Reserve Officer Training Corps (AFROTC). After graduating Magna
Cum Laude from the University of Nebraska at Omaha with a bachelor’s degree in
Computer Science, he was assigned to Offutt Air Force Base, where he worked as the
Officer in Charge of MILSTAR Operations. While at Offutt, he applied and was accepted
to pursue his Masters of Science degree at AFIT. Lieutenant Bebo’s military awards
include the Air Medal, five Aerial Achievement Medals, three Air Force Commendation
Medals, two Air Force Achievement Medals, the Combat Readiness Medal, the Armed
Forces Expeditionary Medal, the Southwest Asia Service Medal, and the Kuwait
Liberation Medal. Additionally, Lieutenant Bebo has been selected as a distinguished
graduate from the Korean and Slavic Cryptologic Linguist courses, as well as from
AFROTC Field Training and AFROTC Detachment 470. Upon graduation Lieutenant

Bebo will be assigned to the Air Force Research Laboratories, Rome, New York.

VITA-1

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To/
28 02 2002 Master's Thesis Jan 2001 - Mar 2002
4. TITLE AND SUBTITLE 5ba. CONTRACT NUMBER

USING RELATIONAL SCHEMATA IN A COMPUTER IMMUNE
SYSTEM TO DETECT MULTIPLE-PACKET NETWORK INTRUSIONS

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Bebo, John L., First Lieutenant, USAF 01-179

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER
Graduate School of Engineering and Management (AFIT/EN) AFIT/GCS/ENG/02M-02

2950 P Street, Building 640
WPAFB, OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/IFGB

Attn: Mr. John Feldman
525 Brooks Rd.

11. SPONSOR/MONITOR'S REPORT
Rome, NY 13441-4505 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Given the increasingly prominent cyber-based threat, there are substantial research and development efforts underway in network
and host-based intrusion detection using single-packet traffic analysis. However, there is a noticeable lack of research and
development in the intrusion detection realm with regard to attacks that span multiple packets. This leaves a conspicuous gap

in intrusion detection capability because not all attacks can be found by examining single packets alone. Some attacks may only be
detected by examining multiple network packets collectively, considering how they relate to the "big picture,” not how they

are represented as individual packets.

This research demonstrates a multiple-packet relational sensor in the context of a Computer Immune System (CIS) model to search
for attacks that might otherwise go unnoticed via single-packet detection methods. Using relational schemata, multiple-packet CIS
sensors define "self" based on equal, less than, and greater than relationships between fields of routine network packets. Attacks
are then detected by examining how the relationships among attack packets may lay outside of the previously defined "self."

15. SUBJECT TERMS
intrusion detection, relational schemata, relational schema, anomaly detection, computer networks, packet visualization,
multiple-packet detection

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER [19a. NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT | ¢. THIS PAGE ABSTRACT OF Professor Gregg Gunsch, ENG
PAGES
18} U U UU 143 19b. TELEPHONE NUMBER (/nclude area code)
(937) 255-6565, ext 4281; gregg.gunsch@afit.edu

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18

